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Abstract

An estimator of a finite-dimensional parameter is said to be doubly robust if it im-

poses parametric specifications on two unknown nuisance functions, but only requires

that one of these two specifications is correct in order for the estimator to be consis-

tent for the object of interest. In this paper, we study semiparametric versions of such

estimators that use nonparametric methods for estimating the nuisance functions. We

show that in many practically relevant models the particular structure of these estima-

tors automatically removes the largest “second order” terms that otherwise adversely

affect finite sample performance. The estimators are also remarkably robust with re-

spect to the choice of smoothing parameters. By studying an abstract setting, we also

clarify which features of these models are responsible for these favorable properties.
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1. Introduction

1.1. Motivation. An estimator of a finite-dimensional parameter in a semiparametric

model is said to be doubly robust (DR) if it imposes parametric specifications on two un-

known nuisance functions, and is consistent if at most one of these two specifications is incor-

rect. Estimators with a DR property feature prominently in the statistics and biostatistics

literature on missing data and treatment effect models, but have also been developed for

other settings. See for example Robins, Rotnitzky, and Zhao (1994), Robins and Rotnitzky

(1995, 2001), Scharfstein, Rotnitzky, and Robins (1999), Robins, Rotnitzky, and van der

Laan (2000), Van der Laan and Robins (2003), Bang and Robins (2005), van der Laan and

Daniel (2006), Tan (2006, 2010), Kang and Schafer (2007) or Tsiatis (2007), among many

others. DR methods are used much more rarely in econometrics; but see Wooldridge (2007),

Graham, Pinto, and Egel (2012) or Sloczynski and Wooldridge (2014) for a discussion of

some applications.

Doubly robust estimators achieve their eponymous property by combining the estimates

of the two unknown nuisance functions in a particular way. To illustrate that, consider

a simple missing data model where X is a vector of covariates that is always observed,

and Y ∗ is a scalar outcome variable that is observed if D = 1, and unobserved if D = 0.

The data consist of a random sample of size n from the distribution of Z = (Y,X,D),

where Y = DY ∗, and the parameter of interest is θo = E(Y ∗). Also assume that the data

are missing at random, that is E(D|Y ∗, X) = E(D|X), and define the regression function

ξo1(x) = E(Y |D = 1, X = x) and the propensity score ξo2(x) = E(D|X = x). Then a class of

DR estimators of θo is of the form

θ̂DR =
1

n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)

)
, (1.1)

where ξ̂1 and ξ̂2 are estimates of ξo1 and ξo2, respectively, based on “working” parametric
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models for these two functions.1 Writing ξg = plimn→∞ ξ̂g for g = 1, 2, one sees that θ̂DR is

indeed doubly robust because

plim
n→∞

θ̂DR = E
(
Di(Yi − ξ1(Xi))

ξ2(Xi)
+ ξ1(Xi)

)
= θo if ξ1 = ξo1 or ξ2 = ξo2.

Common alternative approaches to estimating θo, which only require an estimate of one of

the two nuisance functions, include for example the regression-adjustment (REG) or the

Inverse Probability Weighting (IPW) estimator, defined as

θ̂REG =
1

n

n∑
i=1

ξ̂1(Xi) and θ̂IPW =
1

n

n∑
i=1

DiYi

ξ̂2(Xi)
, (1.2)

respectively. While θ̂REG is only consistent if the “working” parametric model for the regres-

sion function is correctly specified; and θ̂IPW is only consistent if the “working” parametric

model for the propensity score is correctly specified, for θ̂DR to be consistent it suffices that

either of these two “working” parametric specifications is correct. Given the high risk of

model misspecification in practice, DR procedures thus have the desirable feature that they

“give the analyst two chances, instead of one, to make a valid inference” (Bang and Robins,

2005, p. 962).

In the econometrics literature, semiparametric models like the above-mentioned missing

data example are often estimated using semiparametric two-stage (STS) estimators, which

are based on nonparametric estimates of unknown nuisance functions. For example, an

STS version of the estimators in (1.2) can be obtained by using local polynomial smoothing

or orthogonal series regression to estimate the regression function or the propensity score,

1For example, ξ̂1 could be an Ordinary Least Squares estimate based on a linear specification of the
regression function, and ξ̂2 could be a Maximum Likelihood estimate based on a Probit or Logit specification
of the propensity score. Here the notion of a “working” model means that the parametric specifications of
ξo1 and ξo2 are not considered to be part of the semiparametric missing data model, but only the construction
of the estimator. For example, they would not be used for the purpose of calculating the semiparametric
efficiency bound for estimating θo. Also note that in the econometrics literature sometimes estimators are
only referred to as being semiparametric if they depend on nonparametric estimates of nuisance functions.
In this sense, the estimator θ̂DR would be fully parametric.
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respectively, instead of postulating parametric restrictions. Under suitable regularity con-

ditions, such versions of θ̂REG and θ̂IPW are
√
n-consistent and asymptotically normal; and

in both cases the limiting variance also coincides with the semiparametric efficiency bound

for estimating θo. See Hirano, Imbens, and Ridder (2003) or Ichimura and Linton (2005) for

theoretical results on STS-IPW estimation; and Imbens, Newey, and Ridder (2007) or Chen,

Hong, and Tarozzi (2008) for results on STS-REG estimators.

Of course, one can also construct an STS analogue of θ̂DR. Standard calculations (e.g.

Newey, 1994) show that the asymptotic variance of such an STS-DR estimator would be

identical to those of STS versions of either θ̂REG or θ̂IPW . In particular, all three estimators

would be efficient. However, to construct an STS-DR estimator one has to compute two

nonparametric estimators instead of one. This raises the question whether one should at all

consider a DR approach to building an STS estimator in the above missing data example

– or any other models in which DR estimators exist – given that it involves additional

computational costs and leads to a procedure that may not dominate existing ones in terms

of first-order asymptotic variance. Put differently: is the robustness against parametric

misspecification of nuisance functions that constructions like (1.1) have of any use in a

nonparametric setting where nuisance functions are always consistently estimated?

1.2. Contributions of this Paper. Motivated by these questions, this paper makes three

main contributions. First, it shows that there are indeed strong reasons to prefer an STS

version of θ̂DR over θ̂REG or θ̂IPW in the context of a general missing data model where the

data are missing at random (MAR). This model covers our simple example from above, but

also many more realistic applications. Using kernel smoothing for estimating the nuisance

functions, we show that the special structure of a construction like (1.1) automatically re-

moves the largest “second order” terms in a linear expansion of the estimator. That is, while

a standard linear expansion of θ̂DR, θ̂REG and θ̂IPW produces the same first-order terms, the
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corresponding remainder term is substantially smaller for θ̂DR than it is for the competing

procedures. As a consequence, the DR estimator can have smaller first order bias and sec-

ond order variance, and its stochastic behavior is more accurately described by the usual

Gaussian approximation based on first-order asymptotics. The latter feature implies for ex-

ample that the coverage probability of the usual 95% confidence intervals of the form “point

estimate±1.96×standard error” should be closer to its nominal value in finite samples when

it is based on θ̂DR instead of one of the other estimators (which all have the same standard

error). Through simulations, we show that these theoretical predictions also translate well

into actual finite sample gains of practically relevant magnitude.2

We also argue that having to choose a second smoothing parameter is not a substantial

practical downside of the DR estimator. This is an important concern because it is well-

known that many STS estimators, including θ̂REG and θ̂IPW in models like the one described

in the introduction, can be highly sensitive with respect to the implementation details of

the nonparametric stage in finite samples (e.g. Linton, 1995; Robins and Ritov, 1997). This

sensitivity arises because the value of the smoothing parameters affects the magnitude of the

remainder terms in a linear expansion of these estimators; and while these remainders are

“second order” terms in an asymptotic sense, they can often be quite large for samples of the

size typically encountered in empirical practice. Since the construction (1.1) automatically

removes the largest of these second order terms, however, θ̂DR should be rather insensitive to

variation in smoothing parameters. This is confirmed by our simulations, which find that the

properties of STS-DR estimators hardly vary over a wide range of smoothing parameters for

estimators of the regression function and the propensity score, whereas the bias and variance

of procedures like the IPW or REG estimator can be extremely sensitive in this regard.

2In a recent large-scale Monte Carlo study, Frölich, Huber, and Wiesenfarth (2015) report finite-sample
properties of STS-DR estimators for class of complex data generating processes calibrated to mimic a realistic
data set. Their results are qualitatively very similar to those that we find in our simulations; see Remark 3
below.
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As a second contribution, we analyze which particular features of the semiparametric

missing data model are responsible for the gain in performance of the DR estimator relative

to its competitors; thus clarifying under which conditions we would expect to be able to

construct estimators with analogous properties in other semiparametric models in which DR

procedures are known to exist. To answer this question, we study a generic class of STS

estimators based on a doubly robust moment condition. Here a moment condition is said to

be DR if it depends on two unknown nuisance functions, but still identifies the parameter of

interest if either one of these functions is replaced by some arbitrary value.

Our main finding in this regard is that DR moments alone are not able to generate STS

estimators with the same desirable properties that we obtained under the missing data model.

Achieving analogous results requires some additional structure which, roughly speaking,

ensures that the residuals from estimating the two nuisance functions are asymptotically

uncorrelated. Such an orthogonality condition can follow for example from some feature of

the semiparametric model, but it could also be ensured through an appropriate construction

of the two nonparametric function estimates. In the case of the missing data model, for

example, the orthogonality property follows from the data being missing at random.

As a third contribution, we use the results on STS estimators based on generic DR

moment conditions to study estimation in semiparametric models for which the existence

of doubly robust estimators is rather less well known relative to the missing data case.

Specifically, we study the partially linear regression model, a model for nonparametric policy

analysis, and weighted average derivatives. Our theory produces new results for some of

these models, and reproduces familiar findings for others. For example, it turns out that

Robinson’s (1988) estimator of the parametric component of a partially linear model can in

fact be interpreted as an example of an STS estimator based on a DR moment condition.
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1.3. Related Literature. Semiparametric estimators that depend on nonparametrically

estimated functions, such as densities or conditional expectations, are central to economet-

rics; and have been studied extensively by Newey (1994), Newey and McFadden (1994),

Andrews (1994), Chen, Linton, and Van Keilegom (2003), Ai and Chen (2003), Chen and

Shen (1998) and Ichimura and Lee (2010), among many others. Often these estimators are

first-order asymptotically equivalent to sample average. In particular, an STS estimator θ̂ of

some parameter θo based on an i.i.d. sample {Zi}ni=1 from the distribution of some random

vector Z is said to be asymptotically linear with influence function φ(·) if

Rn(θ̂) ≡ θ̂ − θo − 1

n

n∑
i=1

φ(Zi) = oP (n−1/2), E(φ(Zi)) = 0, E(φ(Zi)φ(Zi)
>) <∞.

Our focus in this paper is not on the form of φ(·), but on the accuracy of the first-order

approximation that Rn(θ̂) ≈ 0, which together with an application of the Central Limit Theo-

rem to 1
n

∑n
i=1 φ(Zi) justifies the Gaussian approximation that θ̂

a∼ N(θo,E(φ(Zi)φ(Zi)
>)/n).

Several papers have obtained results about the magnitude of Rn(θ̂) under various condi-

tions; and in order to have a point of reference for the findings presented in this paper it is

useful to review some of them. One class of results applies to settings where θ̂ depends on

an (l + 1)-times differentiable regression or density function with d-dimensional argument

that is estimated by kernel-type methods3 using a bandwidth h. It is well-known that un-

der standard regularity conditions the nonparametric estimator has bias of order hl+1 and

(pointwise) variance of order n−1h−d in this case. Newey and McFadden (1994) show that

an STS estimator θ̂ in this class generally satisfies

Rn(θ̂) = OP (hl+1) +OP (n−1h−d).

For θ̂ to be asymptotically linear, one thus requires both a “small bias” and a “small variance”

3By kernel-type methods, we mean methods like the Rosenblatt-Parzen kernel density estimator, the
Nadaraya-Watson estimator, Local Linear or Local Polynomial regression, and local parametric models.
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condition on the first step nonparametric estimator. Hall and Marron (1987), Powell, Stock,

and Stoker (1989) and Powell and Stoker (1996) show that if θ̂ is a linear transformation

of a “leave-one-out” kernel weighted average4 the “small variance” condition can be relaxed

because

Rn(θ̂) = OP (hl+1) +OP (n−1h−d/2)

in this case. Techniques for explicitly removing the term of order OP (n−1h−d) for estimators

that are nonlinear transformations of a nonparametrically estimated function are discussed

in the context of specific applications by Ichimura and Linton (2005) or Cattaneo, Crump,

and Jansson (2013), for example. Newey, Hsieh, and Robins (2004) show that if a twicing

kernel is used instead of a regular one, or if θ̂ is based on an influence function in the

corresponding semiparametric model, then one can weaken the “small bias” condition for

asymptotic linearity since

Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d)

in this case. Bickel and Ritov (2003) show that the same degree of accuracy can be achieved

with a generic higher-order kernel if φ(·) is sufficiently smooth and the nonparametrically

estimated function is a density; see also Ichimura and Newey (2015).5 Newey (1994) shows

that when using an orthogonal series estimator in the first stage, an analogous less stringent

“small bias” condition suffices for asymptotic linearity of a general class of STS estimators;

a result that is extended by Shen et al. (1997), Chen and Shen (1998) and Ai and Chen

(2003) to more general classes of sieve estimators. To preview one of our results from below,

4Functions that can be estimated by kernel-weighted averages are those of the form ξ(a) = f(a)E(B|A =
a), where A,B are generic random variables and f is the density of of A. This class does thus not contain
conditional expectation functions, for example.

5This result can to some extent be combined with the ones mentioned above. For example, if θ̂ is a
linear transformation of a “leave-one-out” kernel weighted average and a twicing kernel is being used, then
Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d/2); see Newey et al. (2004). Note that estimators based on higher-order
kernels typically have poor finite sample properties, and are therefore hardly used in practice. A twicing
kernel is a particular type of higher-order kernel, and thus the same comment applies.
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it will turn out that for kernel-based STS versions of DR estimators it typically holds that

the magnitude of both second order terms is reduced relative to the baseline result of Newey

and McFadden (1994); that is,

Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d/2)

if the bandwidth is within an appropriate range.

STS versions of DR estimators have been used before in some papers. As mentioned

above, Robinson’s (1988) estimator of the parametric component of a partially linear model is

in fact such a case. In a treatment effect context, Cattaneo (2010) proposed an STS estimator

with the structure of a DR estimator, but did not prove that this approach has any formal

advantages. The construction that leads to the DR property is explicitly exploited in Belloni,

Chernozhukov, Fernández-Val, and Hansen (2014a), Belloni, Chernozhukov, and Hansen

(2014b) and Farrell (2014) for treatment evaluation in a very high-dimensional setting, where

a LASSO-type estimator is used in the first stage.

In parametric problems, concerns about the accuracy of first order distributional ap-

proximations are often addressed by using the bootstrap, which is able to achieve asymp-

totic refinements in many settings (e.g. Hall, 1992). Unfortunately, there exist hardly any

comparable results for STS estimators in the literature. Although suitably implemented

bootstrap procedures are known to be first order valid in semiparametric settings (e.g. Chen

et al., 2003), to the best of our knowledge the only paper that establishes an asymptotic

refinement is Nishiyama and Robinson (2005), which studies the density-weighted average

derivative estimator of Powell et al. (1989); but see Cattaneo, Crump, and Jansson (2014)

for a cautionary tale regarding the robustness of such refinements.

1.4. Outline of the Paper. The remainder of the paper is structured as follows. In the

next section, we study an STS analogue of DR estimator in a general missing data model, and
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show that it has favorable theoretical and practical properties relative to other commonly

used STS estimators. In Section 3, we study semiparametric DR estimation in a stylized

model, and show that the DR property alone is not enough to generate the type of results

we obtained for the missing data model, and clarify which additional structure is needed.

In Section 4, we consider three other classes of specific models which can be studied using

our framework: the partially linear model, a model for policy analysis, and weighted average

derivatives. Finally, Section 5 concludes. All proofs are collected in the Appendix.

2. Semiparametric Estimation in a General Missing Data Model

In this section, we study a general semiparametric missing data model that contains the

simple example outlined in the introduction as a special case, but also covers for example

regression models with missing covariates and/or outcome variables (e.g. Scharfstein et al.,

1999; Robins and Rotnitzky, 1995; Chen et al., 2008), and a large class of treatment effect

models (e.g. Heckman, Ichimura, and Todd, 1998; Hahn, 1998; Hirano et al., 2003; Imbens,

2004). We construct an STS version of a DR estimator and show that it has favorable

theoretical and practical properties relative to other commonly used STS estimators.

2.1. Model. Suppose that the underlying full data are a sample from the distribution

of (Y ∗, X), and let D be an indicator variable with D = 1 if Y ∗ is observed and D = 0

otherwise. The observed data thus consist of a sample {Zi}ni=1 = {(Yi, Xi, Di)}ni=1 from

the distribution of Z = (Y,X,D), where Y = DY ∗. Also suppose that the parameter

θo is the unique solution of the nonlinear moment condition E(m(Y ∗, X, θ)) = 0, where

m(·, θ) is a known function taking values in Rdθ . Identification is achieved by assuming that

Y ∗ is missing at random, that is E(D|Y ∗, X) = E(D|X) with probability 1. Now define

the regression function ξo1(x, θ) = E(m(Y,X, θ)|D = 1, X = x) and the propensity score

ξo2(x) = E(D|X = x). The propensity score is assumed to be bounded away from zero over
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the support of X. Also, define

φMD(Z) = E(∇θm(Y ∗, X, θo))−1

(
D(m(Y,X, θo)− ξo1(X, θo))

ξo2(X)
+ ξo1(X, θo)− θo

)
,

ΣMD = E(φMD(Z)φMD(Z)>),

which are, respectively, the efficient influence function and the asymptotic variance bound

for estimating θo in this model (cf. Robins et al., 1994; Hahn, 1998; Chen et al., 2008).

2.2. Estimator. We estimate the two nuisance functions ξo1 and ξo2 by “leave-one-out”

local polynomial regression. This class of kernel-based smoothers has been studied ex-

tensively by Fan (1993), Ruppert and Wand (1994), Fan and Gijbels (1996) and others.

It is well-known to have attractive bias properties relative to other kernel-based meth-

ods, such as the Nadaraya-Watson estimator. For generic vectors b = (b1, . . . , bd) and

α = (α(0,...,0), α(1,0,...,0), . . . , α(0,...,0,l)), let Pl,α(b) =
∑

0≤|s|≤l αsb
s be a polynomial of order l.

Here
∑

0≤|s|≤l denotes the summation over all d-vectors s of positive integers with 0 ≤ |s| ≤ l.

Also let K be a univariate density function, put Kh(b) =
∏d

j=1K(bj/h)/h for any bandwidth

h ∈ R+, and define

α̂−i(x, θ) = argmin
α

∑
j 6=i

(m(Yj, Xj, θ)− Pl1,α(Xj − x))2Kh1(Xj − x)I{Dj = 1},

β̂−i(x) = argmin
β

∑
j 6=i

(Dj − Pl2,β(Xj − x))2Kh2(Xj − x).

With this notation, the “leave-one-out” local polynomial estimates of ξo1(Xi, θ) and ξo2(Xi)

are given by

ξ̂1(Xi, θ) = α̂−i(0,...,0)(Xi, θ) and ξ̂2(Xi) = β−i(0,...,0)(Xi),

respectively, for i = 1, . . . , n. Note that we are allowing for different orders of the local

polynomial and different bandwidths when estimating ξo1 and ξo2, but in practice they might

well be the same. The estimator θ̂DR is defined as the value of θ that solves the following
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equation:

1

n

n∑
i=1

(
Di(m(Yi, Xi, θ)− ξ̂1(Xi, θ))

ξ̂2(Xi)
+ ξ̂1(Xi, θ)

)
= 0.

We will refer to θ̂DR as an STS-DR estimator in the following. For g = 1, 2, we also define

the sequences bgn = h
lg+1
g and sgn = (log(n)/(nhdg))

1/2, which under the conditions that

we impose below correspond to the (uniform) order of the bias and the stochastic part,

respectively, of our two nonparametric estimators (cf. Masry, 1996).

2.3. Main Result. We study the theoretical properties of the estimator θ̂DR under the

following assumptions.

Assumption K1. (i) The kernel K is twice continuously differentiable; (ii)
∫
K(u)du = 1;

(iii)
∫
uK(u)du = 0; (iv)

∫
|u2K(u)|du < ∞; and (v) K(u) = 0 for u not contained in some

compact set, say [−1, 1].

Assumption MD1. (i) E(m(Y ∗, X, θo)) = 0 and E(m(Y ∗, X, θ)) 6= 0 for all θ ∈ Θ ⊂ Rdθ ,

with Θ a compact set and θo ∈ int(Θ), (ii) there exists a non-negative function b such

that |m(Y ∗, X, θ)| < b(Y ∗, X) with probability 1 for all θ ∈ Θ, and E(b(Y ∗, X)) < ∞, (iii)

m(Y ∗, X, θ) is continuous on Θ and continuously differentiable in an open neighborhood of

θo, (iv) E(‖m(Y ∗, X, θo)‖2) <∞ and, (v) supθ∈Θ E(‖∇θm(Y ∗, X, θ)‖) <∞.

Assumption MD2. (i) X is continuously distributed both unconditionally and conditional

on D = 1, with compact and convex support S(X) and S(X|D = 1), respectively; (ii)

the corresponding density functions are bounded, have bounded first order derivatives, and

are bounded away from zero, uniformly over S(X) and S(X|D = 1), respectively; (iii)

ξo2(x) is (l2 + 1)-times continuously differentiable; (iv) ξo1(x, θ) is (l1 + 1)-times continuously

differentiable in x for all θ ∈ Θ, and supx∈S(X|D=1) E(‖m(Y,X, θo)‖c|D = 1, X = x) <∞ for

some constant c > 2.
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Assumption K1 describes a standard kernel function. The support restrictions on K could

be weakened to allow for kernels with unbounded support at the expense of a more involved

notation. Assumption MD1 is a set of regularity conditions that ensures that a standard

Method-of-Moments estimator of θo would be
√
n-consistent and asymptotically normal in

the absence of missing data. Assumption MD2 collects a number smoothness and regularity

conditions of the form commonly imposed in the context of nonparametric regression. We

then obtain the following asymptotic normality result.

Theorem 1. Suppose that Assumptions K1 and MD1–MD2 hold; and that h1, h2 are such

that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2. Then
√
n(θ̂DR−θo)

d→

N(0,ΣMD).

2.4. Discussion. Theorem 1 differs from other asymptotic normality results for STS es-

timators (e.g. Newey, 1994; Newey and McFadden, 1994; Chen et al., 2003; Ichimura and

Lee, 2010) in that it only imposes relatively weak conditions on the accuracy of the nonpara-

metric first stage estimates. The bandwidth restrictions allow each of the smoothing biases

from estimating ξo1 and ξo2 to be of the order o(n−1/6) as long as their product is of the order

o(n−1/2), and only require the respective stochastic parts to be of the order oP (n−1/6). This

is result is better understood by looking at the difference between θ̂DR and its asymptotically

linear representation. Consider the case that h1 = h2 ≡ h and l1 = l2 ≡ l to simplify the

exposition. Then by following the proof of Theorem 1 one can see that this difference is

minimized if h is chosen such from the permissible range of bandwidths that n1/2dh → ∞,

in which case

θ̂DR − θo −
1

n

n∑
i=1

φMD(Zi) = OP (h2(l+1)) +OP (n−1h−d/2). (2.1)

The magnitudes of the two terms on the right-hand side of the previous equation correspond

to those of the squared bias and hd/2 times the (pointwise) variance of the ξ̂g, respectively.
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Their sum can be as small as OP (n−4(l+1)/(4(l+1)+d)). If l = d = 1, for example, the right-

hand-side of (2.1) is minimized by choosing h ∝ n−2/9, and is of the order OP (n−8/9) in this

case. If d ≤ 3, the range of bandwidths that satisfy the conditions of Theorem 1 includes

those of the form hg ∝ n−1/(2(l+1)+d), which minimize the Integrated Mean Squared Error

(IMSE) for estimating ξo1 and ξo2, respectively. This is convenient, as there are well-known

methods such as cross-validation to construct such bandwidths. However, such bandwidths

do not necessarily have any optimality properties for estimating θo.

It is instructive to compare these properties to that of the popular Inverse Probability

Weighting (IPW) estimator θ̂IPW (e.g. Hirano et al., 2003; Firpo, 2007), which is defined as

the value of θ that solves the equation

1

n

n∑
i=1

Dim(Yi, Xi, θ)

ξ̂2(Xi)
= 0.

Following arguments like in Ichimura and Linton (2005), who study this estimator in a

slightly simpler setting, we would need h2 to be such that b2n = o(n−1/2) and s2n = o(n−1/4)

to ensure that
√
n(θ̂IPW − θo)

d→ N(0,ΣMD). These conditions, which are the familiar from

Newey and McFadden (1994), are called for because an expansion of θ̂IPW only gives that

θ̂IPW − θo −
1

n

n∑
i=1

φMD(Zi) = OP (hl+1) +OP (n−1h−d). (2.2)

The difference between θ̂IPW and its asymptotically linear representation is thus at best

of the order OP (n−(l+1)/(l+1+d)). For example, if l = d = 1 the difference is at least of

the order OP (n−2/3), which is bigger than what we obtained for the STS-DR estimator.

As a consequence, we can expect standard Gaussian approximations based on first-order

asymptotic theory to be more accurate in finite samples for θ̂DR than for θ̂IPW .

Remark 1. Using a linear smoother to estimate the propensity score has the practical

disadvantage that the estimates are not constrained to be between zero and one. A way
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to address this problem is to use a local polynomial Probit estimator instead. That is, one

could redefine

β̂−i(x) = argmax
β

∑
j 6=i

(Dj log(Φ(Pl,β(Xj − x)))

+ (1−Dj) log(1− Φ(Pl,β(Xj − x))))Kh(Xj − x),

where Φ is the CDF of the standard normal distribution, and let ξ̂2(Xi) = Φ(β−i(0,...,0)(Xi)). A

local Logit estimator could be defined similarly. In view of the results of Fan, Heckman, and

Wand (1995) and Kong, Linton, and Xia (2010), we conjecture that this would not affect

the result of our asymptotic analysis, as the local polynomial Probit estimator and the usual

local polynomial estimator should have Bahadur expansions that share a common structure.

Remark 2. If one would use a “leave-in” version of the local polynomial regression estimator

to construct θ̂DR, this would give rise to an additional bias term of order O(n−1h−d) in the

right-hand-side of expansion (2.1). This bias would not vanish faster than n−1/2 under the

conditions of the Theorem. Using “leave-one-out” estimators to avoid this type of bias is a

standard technique in the literature on STS estimation; see for example Hall and Marron

(1987), Powell et al. (1989) or Powell and Stoker (1996).

2.5. Simulation Evidence. In this subsection, we study the finite sample properties of

the STS-DR estimator through a Monte Carlo experiment, and compare them to those of

other STS estimators of the same parameter. Our aim is to illustrate that the theoretical

results obtained above provide a realistic picture of the behavior of the estimator in practice.

The data generating process in our simulations is the special case of our general missing data

model described in the introduction. The covariate X is scalar and uniformly distributed

on the interval [0, 1]. The outcome variable Y ∗ is normally distributed given X with mean

ξo1(X) = 1/(1 + 16 · X2) and variance .5. The indicator D for a complete observation
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is a Bernoulli random variable with mean ξo2(X) = 1 − .8 · ξo1(X). With these choices

θo = E(Y ∗) ≈ .331 and ΣMD ≈ .188. We consider the sample size n = 500, and set the

number of replications to 5,000.

To investigate the robustness of the properties of the STS-DR estimator with respect to

the implementation of the nonparametric first stage, we do actually not only consider the

kernel-based version described above, but also two alternative versions based on different

types of nonparametric first stage estimators; and also use a variety of different smoothing

parameters. Specifically, we consider estimators of the form

θ̂DR−s =
1

n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)

)

with s ∈ {K,OS, SP}. Here θ̂DR−K is the kernel based estimator described above, which

uses a “leave-one-out” local linear estimator with bandwidth h1 ∈ {.05, .08, . . . , .5} for the

regression function ξo1; and a “leave-one-out” local linear Logit estimator with bandwidth

h2 ∈ {.05, .08, . . . , .5} for the propensity score ξo2. In both instances a Gaussian kernel is

used. By θ̂DR−OS we denote an orthogonal series based STS-DR estimator, which uses a linear

series regression with a standard polynomial basis and h1 ∈ {1, 2, . . . , 11} terms to estimate

the regression function; and a series Logit estimator using the same set of basis functions

and h2 ∈ {1, 2, . . . , 11} terms to estimate the propensity score. Finally, we consider a

spline based STS-DR estimator θ̂DR−SP , which uses cubic smoothing splines with smoothing

parameters h1, h2 ∈ {.5, .55, . . . , 1.25} for the regression function and the propensity score,

respectively.6 For all combinations of nonparametric estimators and smoothing parameters,

6To give a point of reference, note that the smoothing parameters for estimating the regression function
and the propensity score, respectively, that would be obtained by minimizing a least-squares cross-validation
criterion are roughly equal for these two functions, and take a numerical value of about .1 for kernel estima-
tion, 3 for series estimation, and 1 for splines.
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we also compute nominal (1− α) confidence intervals of the usual form

CI1−α
DR−s =

[
θ̂DR−s ± zα ·

(
Σ̂s/n

)1/2
]
,

where zα is the 1− α/2 quantile of the standard normal distribution and

Σ̂s =
1

n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)− θ̂DR−s

)2

is an estimate of the asymptotic variance ΣMD, for s ∈ {K,OS, SP}. We consider the usual

confidence level 1− α = .95 for our simulations.

[TABLE 1 ABOUT HERE]

In Table 1 we report the Mean Squared Error (MSE), absolute bias (BIAS) and variance

(VAR) for the various implementations of the STS-DR estimator for a subset of smoothing

parameters that we considered. We scale these quantities by appropriate transformations of

the sample size to make them more easily comparable to the predictions from asymptotic

theory. Our results show that uniformly over all implementations the STS-DR estimators

are essentially unbiased, and their variance is very close to the efficiency bound ΣMD ≈ .188.

Correspondingly, the MSEs are also very similar to their theoretically predicted value ΣMD.

We also report the empirical coverage probability of the corresponding confidence intervals,

which are all very close to the nominal level 95%. We interpret these results as evidence

that first order asymptotic theory provides a reliable approximation to the finite sample

distribution of the STS-DR estimators, and that this approximation is robust with respect to

the construction of the nonparametric first stage. The last point covers both the general type

of nonparametric procedure (kernel, series, splines) and the choice of smoothing parameters.

To put these results into perspective, we also study the performance of a number of

alternative estimators that are not STS analogues of a DR procedure. To begin by consid-

ering inverse probability weighting (IPW) and regression (REG) type estimators using the
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same range of nonparametric first step procedures and smoothing parameters as for STS-DR

estimators above. That is, we consider the estimators

θ̂IPW−s =
1

n

n∑
i=1

DiYi

ξ̂2(Xi)
and θ̂REG−s =

1

n

n∑
i=1

ξ̂1(Xi),

with s ∈ {K,OS, SP}, and the corresponding nominal (1−α) confidence intervals CI1−α
IPW−s

and CI1−α
REG−s. Note that these two confidence intervals by construction have the same length

as CI1−α
DR−s for each s and every value of the smoothing parameters, and only differ in the

point at which they are centered.7

From the practitioner’s perspective, if inference is based on calculation of analytical for-

mulae of asymptotic variance, then it will be necessary to estimate both nuisance functions.

No way out of it, unless inference is implemented using alternative methods. This point is

to emphasize that the ”computational” burden of our method does not really exist, as it

requires the same amount of

In addition to these estimators, we also consider two modifications of the kernel-based

procedures. First, we consider estimators θ̂IPW−TK and θ̂REG−TK that are obtained in the

same way as the ordinary kernel-based IPW and REG estimator, respectively, except for

using a Gaussian twicing kernel instead of a regular one (Newey et al., 2004). Second, we

consider bootstrap bias corrected versions θ̂IPW−BS and θ̂REG−BS of the two kernel-based

estimators, following recommendations in Cattaneo and Jansson (2014).8 We also consider

bootstrap-based confidence intervals for θo calculated using the usual percentile method.

Note that the calculation of these intervals does not involve estimating the asymptotic vari-

7From the practitioner’s perspective, STS-DR might actually not be seen as computationally more costly
than, say, STS-REG or STS-IPW estimators since conducting inference based on an estimate of the asymp-
totic variance requires estimates of the regression function and the propensity score for all three procedures.

8Specifically, the estimators θ̂IPW−BS and θ̂REG−BS are obtained in three steps. First one computes
and ordinary kernel-based IPW or REG estimator, except for not using a “leave-one-out” procedure in the
nonparametric stage. Second, a bootstrap distribution is created by re-computing the estimator on i.i.d.
draws of size n from the empirical distribution function of the data, and centering at the original estimate.
Third, the mean of the bootstrap distribution is taken as an estimate of the bias, and subtracted from the
original estimator.
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ance, and thus do not depend on a second smoothing parameter.

[TABLE 2 ABOUT HERE]

[TABLE 3 ABOUT HERE]

The results of our simulations are given in Table 2 for IPW estimators, and Table 3 for

REG estimators. They show that the properties of these estimators can differ substantially

from the predictions of first-order asymptotic theory. The finite-sample distribution of the

estimators also varies a lot over the various nonparametric first stage procedures we consider,

and thus inference is generally less robust relative to the STS-DR estimators. For example,

the kernel-based IPW estimator θ̂IPW−K is strongly biased for most values of the bandwidth.

Its finite sample variance is well above the theoretical asymptotic variance for all bandwidth

values, exceeding it by almost 70% for h2 = .05. In consequence, the coverage properties

of the corresponding confidence intervals tend to be poor. We also illustrate this point in

Figure 1 by plotting the MSE, bias and variance of θ̂IPW−K against the results for the kernel-

based DR estimator θ̂DR−K . One can see, for example, that the finite-sample MSE of θ̂DR−K

viewed as a function of the bandwidths is close to flat and near the theoretically predicted

value of .188. On the other hand, the MSE of θ̂IPW−K viewed as a function of the bandwidth

has a pronounced “U-shape” and is always well above the theoretically predicted value.

Turning to the remaining estimators, we find that using a twicing kernel does not lead

to a substantial improvement. Our results show some minor bias reduction but also a large

increase in variance relative to the kernel-based IPW.9 Bootstrap bias correction is effective

at reducing the bias for small values of the smoothing parameter, but tends to increase

it for larger bandwidth values. It also tends to increase the finite sample variance of the

9The the REG and IPW estimators based on twicing kernels also produce a number of substantial outliers,
which we removed for the calculations of our summary statistics. Specifically, we discarded all realizations
which differed from the median over all simulations runs by more than four times the interquartile range (we
proceeded like this with all estimators to keep the results comparable).
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Figure 1: Simulation results: MSE, absolute bias and variance of θ̂IPW−K for various values of
h2 (bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal to .05 (short-dashed
line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed dotted line),
and .5 (thin solid line).

estimator, but bootstrap-based confidence intervals have good coverage properties for small

and moderate values of the smoothing parameter. The orthogonal series estimator does very

well in our study in terms of bias, which is small except for the implementation using a

single series term. Still, its variance exceeds the predicted one by roughly 20%. Finally, the

spline based estimator’s bias also depends heavily on the smoothing parameter, whereas its

variance properties are similar to those of the series-based one. Table 3 shows that REG-type

estimators generally perform somewhat better than IPW estimators in this setting. Variances

are relatively close to the efficiency bound over all nonparametric first stage procedures that

we consider. Still, the bias of the kernel, twicing kernel, and bootstrap-corrected kernel
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estimators all vary strongly with the smoothing parameter.

Remark 3. While it would of course be possible to study the properties of STS-DR es-

timators under other DGPs, and to compare them to an even wider class of alternative

procedures, we confine ourselves to the above results due to space constraints. Frölich et al.

(2015) conduct a large-scale simulation study of STS program evaluation estimators, using

a DGP designed to mimic a realistic data set. They report properties of STS-DR estimators

that are qualitatively very similar to ours.

3. Semiparametric Estimation Using Doubly Robust Moment Conditions

The results we derived in the previous section prompt the question whether they are specific

to the model that we considered there, or whether we should generally expect STS versions

of DR estimators to have analogous favorable properties. To answer this question, we study

a stylized class of STS-DR estimators that are constructed as solutions to a sample analogue

of a DR moment condition; a concept that we formally define below. We show that this

construction alone is not enough to obtain an asymptotic normality result like the one in the

previous section, but that instead an additional orthogonality condition on the nonparametric

first-stage estimation errors is needed. In our missing data model, this condition follows from

the assumption that the data are missing at random.

3.1. Setup. We consider a stylized setup in which the problem is to estimate a parameter

θo, contained in the interior of some compact parameter space Θ ⊂ Rdθ , using an i.i.d.

sample {Zi}ni=1 from the distribution of some random vector Z ∈ Rdz . We suppose that one

way (of potentially many different ones) to characterize θo is through a moment condition

containing an infinite dimensional nuisance parameter. That is, we assume that the model

which determines the distribution of Z is such that there exists a known moment function
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ψ taking values in Rdψ , with dψ = dθ, which satisfies the following relationship:

Ψ(θ, ξo) := E(ψ(Z, θ, ξo)) = 0 if and only if θ = θo. (3.1)

Here ξo is an unknown (but identified) nuisance function that could in principle also depend

on θ. We also assume that the functional Ψ in (3.1) is doubly robust for estimating θo. This

means that ξo can be partitioned as ξo = (ξo1, ξ
o
2) ∈ Ξ1 × Ξ2 such that

Ψ(θ, ξo1, ξ2) = 0 and Ψ(θ, ξ1, ξ
o
2) = 0 if and only if θ = θo (3.2)

for all functions ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2. The function ψ is called a doubly robust moment

function in this case. To simplify the exposition, we focus on the case that the nuisance

functions are two conditional expectations that do not depend on θ; that is

ξog(xg) = E(Yg|Xg = xg) for g ∈ {1, 2},

where Yg ∈ R, Xg ∈ Rdg and (Y1, Y2, X1, X2) is a random subvector of Z that might have

duplicate elements. We also assume that the moment function is such that ψ(Z, θ, ξ1, ξ2)

depends on ξg through ξg(Ug) only, where Ug is a subvector of Z. With U denoting the union

of distinct elements of U1 and U2, we write ξ(U) = (ξ1(U1), ξ2(U2)) and, with some abuse of

notation, ψ(Z, θ, ξ1, ξ2) = ψ(Z, θ, ξ1(U1), ξ2(U2)) and Ψ(θ, ξ1, ξ2) = E(ψ(Z, θ, ξ1(U1), ξ2(U2))).

Remark 4. In this paper, we do not consider the question whether a DR moment condition

exists in any given semiparametric model, or whether the asymptotic variance of an estimator

of θo based on such a moment condition achieves the semiparametric efficiency bound. See

Robins and Rotnitzky (2001) for some results in this regard. Our focus is on conditions for

asymptotic linearity of STS estimators based on a DR moment condition.

Remark 5. Robins and Rotnitzky (2001) show that if a DR moment function exists, it

has to be an element of the space of influence functions of the corresponding semiparametric

model. Since every influence function for estimating a dθ-dimensional parameter takes values
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in Rdθ by construction, without loss of generality we can focus on exactly identified settings

where (3.1) holds with dψ = dθ.

Remark 6. Our analysis below can be carried out along similar lines if one of the nuisance

functions is a density instead of a conditional expectation; or a derivative of a density

or conditional expectation. In each case, the functions can be estimated by kernel-type

estimators that share a common structure, and only this structure is used in our proofs.

3.2. Estimator. Our interest is in the properties of STS estimators based on a sample

analogue of a DR moment condition, to which we will refer as STS-DR estimators. Such an

estimator θ̂DR of θo can be constructed as the value of θ which solves the equation

Ψn(θ, ξ̂) ≡ 1

n

n∑
i=1

ψ(Zi, θ, ξ̂(Ui)) = 0, (3.3)

where ξ̂ = (ξ̂1, ξ̂2) is a suitable nonparametric estimate of ξo = (ξo1, ξ
o
2). We focus on estimat-

ing ξog by “leave-one-out” local polynomial regression of order lg using bandwidth hg, where

g = 1, 2. Using notation analogous to that introduced in Section 2.2, we put

α̂−ig (x) = argmin
α

∑
j 6=i

(
Ygj − Plg ,α(Xgj − x)

)2
Khg(Xgj − x), g = 1, 2.

The estimate ξ̂g(Ugi) of ξog(Ugi) is then given by

ξ̂g(Ugi) = α̂−ig,(0,...,0)(Ugi).

For g = 1, 2, we also define the sequences bgn = h
lg+1
g and sgn = (log(n)/(nhdg))

1/2, which

under the conditions that we impose below correspond to the (uniform) order of the bias

and the stochastic part, respectively, of our two nonparametric estimators.

3.3. Main Results. We introduce the following further assumptions for our asymptotic

analysis, which are similar to the regularity conditions imposed in Section 2.3.
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Assumption G1. (i) The DR moment function ψ(z, θ, ξ(u)) is three times continuously

differentiable with respect to ξ(u), with derivatives that are uniformly bounded; (ii) there

exists α > 0 and an open neighborhood N (θo) of θo such that supθ∈N (θo) ‖∇θψ(Z, θ, ξ(U))−

∇θψ(Z, θ, ξo(U))‖ ≤ b(z)‖ξ − ξo‖α; (iii)) the matrix H = E(∇θψ(Z, θo, ξo(U)) has full rank.

Assumption G2. The following holds for g ∈ {1, 2}: (i) Ug is continuously distributed with

compact support S(Ug); (ii) Xg is continuously distributed with support S(Xg) ⊇ S(Ug);

(iii) the corresponding density functions are bounded, have bounded first order derivatives,

and are bounded away from zero uniformly over S(Ug); (iv) the function ξog is (lg + 1) times

continuously differentiable; (v) supu∈S(Ug) E(|Yg|c|Xg = u) <∞ for some constant c > 2.

Following Remark 5, we expect θ̂DR to be adaptive, in the sense that its own influence

function and asymptotic variance are identical to that of an infeasible estimator which uses

the true functions (ξo1, ξ
o
2) instead of the corresponding nonparametric estimates. That is,

we expect the influence function and asymptotic variance of θ̂DR to be

φG(Z) = H−1ψ(Z, θo, ξo1, ξ
o
2) and ΣG = E(φG(Z)φG(Z)>),

respectively (cf. Newey, 1994). The following theorem gives conditions the for asymptotic

normality of θ̂DR.

Theorem 2. Suppose that Assumptions K1 and G1–G2 hold. Then
√
n(θ̂DR − θo)

d→

N(0,ΣG) if in addition either of the following conditions is satisfied:

(a) h1, h2 are such that bgn = o(n−1/4) and sgn = o(n−1/4) for g = 1, 2.

(b) the distribution of the random vector Z is such that

E((Y1 − ξo1(X1)) · (Y2 − ξo2(X2))|X1, X2) = 0; (3.4)

and h1, h2 are such that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2.
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3.4. Discussion. Theorem 2(a) shows that simply being based on a DR moment condition

is not enough for an STS estimator to be asymptotically linear under the same type of weak

restrictions that we imposed in the case of a semiparametric missing data model. Consider

the case that h1 = h2 ≡ h and l1 = l2 ≡ l to simplify the exposition. From the proof of

Theorem 2(a) we then see that under its conditions we only get that

θ̂DR − θo −
1

n

n∑
i=1

φG(Zi) = OP (nh2(l+1)) +OP (n−1h−d). (3.5)

Following Newey et al. (2004), we would expect such a result for any adaptive STS estimator,

so there is nothing particularly special about the DR property here.10 Under the conditions

of Theorem 2(b), however, θ̂DR has theoretical properties analogous to those established in

Theorem 1. In particular, in this case it holds that

θ̂DR − θo −
1

n

n∑
i=1

φG(Zi) = OP (nh2(l+1)) +OP (n−1h−d/2). (3.6)

if h is chosen such from the permissible range of bandwidths that n1/2dh → ∞. The im-

provement comes from the fact that, roughly speaking, the term of order OP (n−1h−d) in

equation (3.5) is driven by the asymptotic covariance between the residuals of ξ̂1 and ξ̂2.

The orthogonality condition (3.4) then essentially ensures that ξ̂1−ξo1 and ξ̂2−ξo2 are asymp-

totically uncorrelated, and the OP (n−1h−d) term drops out.

Remark 7. In our missing data model, condition (3.4) is implied by the assumption that

the data are missing at random. Using the Law of Iterated Expectations, we find that

E(D(m(Y,X, θo)− E(m(Y,X, θo)|D = 1, X)) · (D − E(D|X))|X)

= E((m(Y,X, θo)− E(m(Y,X, θo)|D = 1, X))|D = 1, X) · (1− E(D|X)) · E(D|X) = 0.

Remark 8. The condition (3.4) is not the only way to achieve (3.6). In principle, any

10To be more precise, an inspection of the proof of Theorem 2 shows that the DR property alone removes
some but not all terms of order OP (n−1h−d) from an expansion of the estimator.
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construction that ensures that ξ̂1 − ξo1 and ξ̂2 − ξo2 are asymptotically uncorrelated would

deliver the same finding. For example, a trivial way to obtain fully independent estimation

errors would be to split the data into two parts at random, and then calculate ξ̂1 and ξ̂2 from

different subsamples. A result like in Theorem 2(b) can therefore in principle be obtained

in any model in which a DR moment condition exists.11 We discuss other alternatives to

condition (3.4) in the context of specific examples where one of the nuisance functions is a

density below.

Remark 9. We are not aware of an example of a semiparametric model in which there exists

a DR moment condition of the form studied above but the orthogonality condition (3.4) fails.

We therefore think of the result in Theorem 2(b) as the “standard” one.

4. Additional Applications

In this section, we study three additional examples in which semiparametric analogues of

DR estimators have properties analogous to those obtained in Theorem 2(b): the partially

linear regression model, a model for policy effects, and weighted average derivatives. In each

case, the theoretical properties either follow from the same or largely similar arguments as

those used in the proof of Theorem 2(b).

4.1. Partial Linear Model. Suppose that the data consist of a sample {Zi}ni=1 =

{(Yi, Xi,Wi)}ni=1 from the distribution of Z = (Y,X,W ), where Y is a scalar outcome variable

and both X and W are vectors of explanatory variables. Then a partially linear regression

model assumes that Y = λo(X)+W>θo+ε, where λo is some smooth unknown function, θo is

a vector of parameters, and ε is an unobserved random variable that satisfies E(ε|X,W ) = 0.

This model has been extensively studied in the literature (e.g. Robinson, 1988; Donald and

11Of course, sample splitting is not very attractive from a practical point of view, and we do not mean to
recommend this technique; but it would work for theoretical purposes here. That said, the idea has been
found useful in other contexts for applied economic research (e.g. Angrist and Krueger, 1995; Card, Mas,
and Rothstein, 2008).
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Newey, 1994; Linton, 1995; Cattaneo, Jansson, and Newey, 2012) and is commonly used for

example to estimate demand curves (e.g. Engle, Granger, Rice, and Weiss, 1986; Hausman

and Newey, 1995; Blundell, Duncan, and Pendakur, 1998). Let ξo1(x, θ) = E(Y−W>θ|X = x)

and ξo2(x) = E(W |X = x). Then

ψPLM(Z, θ, ξ) = (Y −W>θ − ξ1(X, θ))(W − ξ2(X))

is a doubly robust moment function for estimating θo; and it follows from the model structure

and the assumption that E(ε|X,W ) = 0 that the orthogonality condition (3.4) holds:

E((Y −W>θo − E(Y −W>θo|X)) · (W − E(W |X))|X)

= E(E(ε|X,W ) · (W − E(W |X))|X) = 0.

To construct an STS-DR estimator of θo, we first estimate the two nuisance functions

ξo1 and ξo2 by “leave-one-out” local polynomial regression, using the same order of the local

polynomial l and bandwidth h in both cases for notational simplicity. Since local polynomial

regression is a linear smoothing procedure, these estimates can be obtained by first defining

α̂−i(x) = argmin
α

∑
j 6=i

(Yj − Pl,α(Xj − x))2Kh(Xj − x),

β̂−i(x) = argmin
β

∑
j 6=i

(Wj − Pl,β(Xj − x))2Kh(Xj − x),

and then putting

ξ̂1(Xi, θ) = α̂−i(0,...,0)(Xi)− β̂−i(0,...,0)(Xi)
>θ and ξ̂2 = β̂−i(0,...,0)(Xi).

Note that to simplify the exposition the same order of the local polynomial l and bandwidth

h are used in both local polynomial smoothing steps. We also define the sequences bn = hl+1

and sn = (log(n)/(nhd))1/2, which under the conditions that we impose below correspond to

the (uniform) order of the bias and the stochastic part, respectively, of the two nonparametric
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estimators. The estimator θ̂DR is then defined as the value of θ that solves the following

equation:

1

n

n∑
i=1

(Yi −W>
i θ − ξ̂1(Xi, θ))(Wi − ξ̂2(Xi)) = 0.

It is easily seen that an explicit expression for θ̂DR is given by

θ̂DR =

(
n∑
i=1

(Wi − ξ̂2(Xi))(Wi − ξ̂2(Xi))
>

)−1 n∑
i=1

(Wi − ξ̂2(Xi))(Yi − α̂−i(0,...,0)(Xi)),

which is identical (up to trimming terms) to the estimator proposed by Robinson (1988).

We study its theoretical properties under the following assumptions.

Assumption PLM1. H = E((W − ξo2(X))(W − ξo2(X))>) is positive definite.

Assumption PLM2. (i) X is continuously distributed with compact support S(X), and

the corresponding density function is bounded, has bounded first order derivatives, and

is bounded away from zero uniformly over S(Z); (ii) the functions λo(x) and ξo2(x) are

both (l + 1)-times continuously differentiable; (iii) supx∈S(X) E(|W |c|X = x) < ∞ and

supx∈S(X) E(|ε|c|X = x) <∞ for some constant c > 4.

Assumption PLM 1 is a full rank condition that ensures point identification of θo, and

Assumption PLM2 is similar to Assumption G2 above. We expect θ̂DR to have influence

function and asymptotic variance

φPLM(Z) = H−1ψPLM(Z, θo, ξo) and ΣPLM = E(φPLM(Z)φPLM(Z)>),

respectively. The following proposition gives a formal asymptotic normality result.

Proposition 1. Suppose that Assumptions K1 and PLM1–PLM2 hold, and that h1, h2 are

such that bn = o(n−1/4) and sn = o(n−1/6). Then
√
n(θ̂DR − θo)

d→ N(0,ΣPLM).

The statement of the proposition is essentially analogous to that of Theorem 1 and

Theorem 2(b) above. It is also similar to results obtained by Linton (1995) and Li (1996),
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who studied the higher-order properties of Robinson’s estimator. Establishing a connection

to DR estimation gives a new interpretation for the generally favorable properties Robinson’s

estimator.

4.2. Policy Effects. Suppose that the data consist of a sample {Zi}ni=1 = {(Yi, Xi)}ni=1

from the distribution of Z = (Y,X), where Y is a scalar dependent variable and X is a

vector of continuous explanatory variables. The problem is to predict the effect of a change

in the distribution of X to that of π(X), where π is some known policy function, on the

mean of the dependent variable. Under an exogeneity condition, this mean effect is given by

θo = E(E(Y |X = x)|x=π(X)). See e.g. Stock (1989), DiNardo, Fortin, and Lemieux (1996),

Donald, Green, and Paarsch (2000), Gosling, Machin, and Meghir (2000), Rothe (2010, 2012,

2015), or Chernozhukov, Fernández-Val, and Melly (2013) for details and applications. Now

let ξo1 = (ξo11, ξ
o
12), where ξo11(x) = E(Y |X = x), ξo12(x) = E(Y |X = π(x)), and ξo2 = (ξo21, ξ

o
22),

where ξo21(x) and ξo22(x) denote the densities of X and π(X), respectively, at x. Then

ψPE(Z, θ, ξ) = ξ12(X) + (Y − ξ11(X))
ξ22

ξ21(X)
− θ

is a doubly robust moment function for estimating θo. This model differs slightly from the

generic setup in Section 3 since ξo1 and ξo2 each have more than one component. It also differs

in the sense that one of the nuisance functions is now a density instead of a conditional

expectation.

To construct an STS-DR estimator, we can again estimate (ξo11, ξ
o
12) by a “leave-one-out”

local polynomial regression of order l1 with bandwidth h1. That is, we define

α̂−i(x) = argmin
α

∑
j 6=i

(Yj − Pl1,α(Xj − x))2Kh1(Xj − x),
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and put

ξ̂11(Xi) = α̂−i(0,...,0)(Xi) and ξ̂12(Xi) = α̂−i(0,...,0)(π(Xi)).

To estimate (ξo21, ξ
o
22), we use standard “leave-one-out” kernel density estimators with band-

width h2, allowing a kernel function of order l2 + 1 for the purpose of bias control. That is,

with K∗ a symmetric function on R whose exact properties are stated below, and K∗h(b) =∏d
j=1K∗(bj/h)/h, we define

ξ̂21(Xi) =
1

n

∑
j 6=i

K∗h2(Xj −Xi) and ξ̂22(Xi) =
1

n

∑
j 6=i

K∗h2(π(Xj)−Xi).

For g = 1, 2, we also define the sequences bgn = h
lg+1
g and sgn = (log(n)/(nhdg))

1/2, which

under the conditions that we impose below correspond to the (uniform) order of the bias

and the stochastic part, respectively, of the nonparametric estimators ξ̂gj, j = 1, 2. With

this notation, our estimator of θo is then given by:

θ̂ =
1

n

n∑
i=1

(
ξ̂12(Xi) + (Yi − ξ̂11(Xi))

ξ̂22(Xi)

ξ̂21(Xi)

)
.

We study the theoretical properties of this estimator under the following assumptions.

Assumption K 2. (i) K∗ is twice continuously differentiable; (ii)
∫
K∗(u)du = 1; (iii)∫

ukK∗(u)du = 0 for k = 1, . . . , l2 + 1; (iv)
∫
|u2K∗(u)|du < ∞; and (v) K∗(u) = 0 for

u not contained in some compact set, say [−1, 1].

Assumption PE1. (i) X and π(X) are continuously distributed with compact support

S(X) and S(π(X)) ⊂ S(X), respectively; (ii) the corresponding density functions ξo21(x)

and ξo22(x) are bounded, l2 + 1 times continuously differentiable, and bounded away from

zero uniformly over S(X) and S(π(X)), respectively; (iii) the function ξo11(x) is l1 + 1 times

continuously differentiable, and supx∈S(π(X)) E(|Y |c|X = x) <∞ for some constant c > 2.

Assumption K2 describes a kernel function of order l2 + 1, which is used to control
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the asymptotic bias of the two density estimates. Assumption PE1 is again similar to

Assumption G2 above. We expect θ̂DR to have influence function and asymptotic variance

φPE(Z) = φPE(Z, θo, ξo) and ΣPE = E(φPE(Z)2),

respectively. The following proposition gives a formal asymptotic normality result.

Proposition 2. Suppose that Assumptions K1–K2 and PE1 hold, and that h1, h2 are such

that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2. Then
√
n(θ̂ − θo) d→

N(0,ΣPE).

The statement of the proposition is essentially analogous to that of Theorem 2(b), even

though as explained above the setup is slightly different. Since one of the nuisance functions

is a density here, equation (3.4) is clearly not applicable. Asymptotic non-correlation of

ξ̂1j − ξo1j and ξ̂2j′ − ξo2j′ follows, roughly speaking, because (i) ξ̂1j − ξo1j is essentially a kernel-

weighted sum of the εi = Yi − E(Yi|Xi), (ii) ξ̂2j′ − ξo2j′ is essentially a kernel weighted sum

of functions of the Xi, and (iii) the εi are uncorrelated with any function of the Xi by the

properties of conditional expectations. With this insight, one can prove the proposition

similarly to Theorem 2(b).12

4.3. Weighted Average Derivatives. Suppose that the data consist of sample {Zi}ni=1 =

{(Yi, Xi)}ni=1 from the distribution of Z = (Y,X), where Y is a scalar dependent variable and

X is a vector of continuously distributed random variables with density function ξo2. Then

the weighted average derivative (WAD) of the regression function E(Y |X = x) is defined as

θo = E(w(X)∇xE(Y |X = x)|x=X), where w is a known scalar weight function. WADs are

important for estimating the coefficients in linear single-index models, and as a summary

12The fact that one of the nuisance functions is a density can easily be accommodated. The kernel density
estimator proposed above has the same structure (or, actually, a much simpler one) as the Bahadur expansion
of a local polynomial regression estimator, and only that structure is used in the proof of Theorem 2(b).
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measure of nonparametrically estimated regression functions more generally (e.g. Stoker,

1986; Powell et al., 1989; Stoker, 1991; Newey and Stoker, 1993; Cattaneo et al., 2013).

Let ξo11(x) = E(Y |X = x), denote the density of X by ξo21(x), and denote the vectors

of partial derivatives of those two functions as ξo12(x) = ∇xξ
o
11(x) and ξo22(x) = ∇xξ

o
21(x),

respectively. With this notation, we have that

ψWAD(Z, θ, ξ(X)) = w(X)ξ12(X)− (Y − ξ11(X))

(
∇xw(X) + w(X)

ξ22(X)

ξ21(X)

)
− θ

is a DR moment function for estimating θo. Note that the need to estimate derivatives

distinguishes this application from the other ones considered in this paper. We address

this issue by using standard derivative estimators of conditional expectations and densities.

Moreover, we allow using different smoothing parameters for estimating levels and derivatives

of a function. Specifically, we estimate ξo11 and ξo12 by “leave-one-out” local polynomial

regression of order l1 and l2 with bandwidth h1 and h2, respectively. That is, we define

α̂−ig (x) = argmin
α

∑
j 6=i

(
Yj − Plg ,α(Xj − x)

)2
Khg(Xj − x).

for g = 1, 2, and put

ξ̂11(Xi) = α̂−i1,(0,...,0)(Xi) and ξ̂12(Xi) =
(
α̂−i2,(1,0,...,0)(Xi), . . . , α̂

−i
2,(0,...,0,1)(Xi)

)>
.

Note that ξo12 is estimated by the slope coefficients of a local polynomial approximation,

whereas ξo11 is estimated by the intercept as usual.

To estimate the density function ξo21, we proceed as we did in the Policy Effects example,

and use a “leave-one-out” kernel density estimator with bandwidth h1 and a kernel of order

l1 + 1. A natural approach to estimate the density derivative ξo22 is to take the derivative of

a “leave-one-out” kernel density estimator with bandwidth h2 and a kernel of order l2 + 1.
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That is, we put

ξ̂21(Xi) =
1

n

∑
j 6=i

K∗h1(Xj −Xi) and ξ̂22(Xi) =
1

n

∑
j 6=i

∇x K
∗∗
h2

(π(Xj)− x)
∣∣
x=Xi

.

Note that we use same lg and hg to estimate ξo1g and ξo2g for g ∈ {1, 2} for notational simplicity

only. We also define the sequences bgn = h
lg+1
g for g = 1, 2, s1n = (log(n)/(nhd1))1/2, and

s2n = (log(n)/(nhd+2
2 ))1/2. These sequences are chosen such that bgn and sgn will correspond

to the (uniform) order of the bias and the stochastic part for estimating ξjg, j = 1, 2. With

this notation, our estimator of θo is given by:

θ̂ =
1

n

n∑
i=1

(
w(Xi)ξ̂12(Xi)− (Yi − ξ̂11(Xi))

(
∇xw(Xi) + w(Xi)

ξ̂22(Xi)

ξ̂21(Xi)

))
.

We study the theoretical properties of this estimator under the following assumptions.

Assumption K3. (i) K∗ and K∗∗ are twice continuously differentiable; (ii)
∫
K∗(u)du = 1

and (ii)
∫
K∗∗(u)du = 1; (iii)

∫
ukK∗(u)du = 0 for k = 1, . . . , l1 + 1 and

∫
ukK∗∗(u)du = 0

for k = 1, . . . , l2 + 1; (iv)
∫
|u2K∗(u)|du < ∞ and

∫
|u2K∗∗(u)|du < ∞; and (v) K∗(u) =

K∗∗(u) = 0 for u not contained in some compact set, say [−1, 1].

Assumption WAD1. (i) w is bounded and has bounded and continuous first order deriva-

tives, and S(w) ≡ {x ∈ Rd : w(x) > 0} is a compact set; (ii) X is continuously dis-

tributed, and the corresponding density function is bounded, has bounded and continu-

ous derivatives up to order max{l1, l2} + 1, and is bounded away from zero uniformly over

S(w); (iii) ξo11(x) has bounded and continuous derivatives up to order max{l1, l2} + 1, and

supx∈S(w) E(|Y |c|X = x) <∞ for some constant c > 2.

Assumption K3 describes a kernel functions of order l1 + 1 and l2 + 1; and Assump-

tion WAD1 is a standard smoothness condition similar to Assumption G2. We expect θ̂DR
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to have influence function and asymptotic variance

φWAD(Z) = φWAD(Z, θo, ξo) and ΣWAD = E(φWAD(Z)φWAD(Z)>),

respectively. Note that ΣWAD is the semiparametric efficiency bound for estimating θo in

this model (Newey and Stoker, 1993). The following proposition gives a formal asymptotic

normality result.

Proposition 3. Suppose that Assumptions K1, K3 and WAD1 hold, and that h1, h2 are such

that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2. Then
√
n(θ̂ − θo) d→

N(0,ΣWAD).

The statement of the proposition is essentially analogous to that of Theorem 1 and

Theorem 2(b). Even though the estimator θ̂DR involves the estimation of four unknown

functions, the proposition shows that it has attractive properties relative to other efficient

estimators proposed in the literature. For example, under the conditions of the proposition

the difference between θ̂DR and the efficient linear representation is of smaller order than

that of various other efficient estimators discussed in Stoker (1991), or that of the jackknife

bias corrected estimator in Cattaneo et al. (2013).

5. Concluding Remarks

In this paper, we have explored the possibility of constructing semiparametric two-step esti-

mators as analogues of standard doubly robust estimators. We have shown that in the context

of semiparametric missing data models such STS-DR estimators have favorable theoretical

and practical properties relative to other commonly used STS estimators such as Inverse

Probability Weighting. These results suggest that STS-DR estimators should become part

of the standard toolkit of applied researchers working with these kinds of models. We have

also shown that the DR property alone is unable to generate estimators with similarly fa-

vorable properties. Instead, it needs to be combined with an orthogonality condition on the
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estimation residuals from the nonparametric first stage. We also studied STS-DR estimation

in three other models that satisfy these criteria. This analysis provided a new interpreta-

tion of Robinson’s estimator for the partially linear model, and suggests that it should be

advisable to combine estimates of conditional expectations and densities to estimate policy

effects and weighted average derivatives.

A. Proofs of Main Results

In this appendix, we give the proofs of Theorem 1–2 and Proposition 1–3. Since Theorem 1

and Theorem 2(b) follow from essentially the same arguments, we only give a detailed account

of the derivation of Theorem 2(b). Our proof of Theorem 1 then simply proceeds by arguing

that the missing data model is a special case of the setup of Theorem 2(b). The derivations

of Proposition 1–3 are sketched along similar lines. We begin by stating two auxiliary results

about the rate of convergence of U -Statistics and a certain expansion of the local polynomial

regression estimator that are used repeatedly in this Appendix.

A.1. Rates of Convergence of U-Statistics. For a real-valued function ϕn(x1, . . . , xk)

and an i.i.d. sample {Xi}ni=1 of size n > k, the term

Un =
(n− k)!

n!

∑
s∈S(n,k)

ϕn(Xs1 , . . . , Xsk)

is called a kth order U-statistic with kernel function ϕn, where the summation is over the

set S(n, k) of all n!/(n − k)! permutations (s1, . . . , sk) of size k of the elements of the set

{1, 2, . . . , n}. Without loss of generality, the kernel function ϕn can be assumed to be sym-

metric in its k arguments. In this case, the U-statistic has the equivalent representation

Un =

(
n

k

)−1 ∑
s∈C(n,k)

ϕn(Xs1 , . . . , Xsk),
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where the summation is over the set C(n, k) of all
(
n
k

)
combinations (s1, . . . , sk) of k of the

elements of the set {1, 2, . . . , n} such that s1 < . . . < sk. For a symmetric kernel function

ϕn and 1 ≤ c ≤ k, we also define the quantities

ϕn,c(x1, . . . , xc) = E(ϕn(x1, . . . , xc, Xc+1, . . . , Xk) and

ρn,c = Var(ϕn,c(X1, . . . , Xc))
1/2.

If ρn,c = 0 for all c ≤ c∗, we say that the kernel function ϕn is c∗th order degenerate.

With this notation, we give the following result about the rate of convergence of a kth order

U-statistic with a kernel function that potentially depends on the sample size n.

Lemma 1. Suppose that Un is a kth order U-statistic with symmetric, possibly sample size

dependent kernel function ϕn, and that ρn,k <∞. Then

Un − E(Un) = OP

(
k∑
c=1

ρn,c
nc/2

)
.

In particular, if the kernel ϕn is c∗th order degenerate, then

Un = OP

(
k∑

c=c∗+1

ρn,c
nc/2

)
.

Proof. The result follows from explicitly calculating the variance of Un (see e.g. Van der

Vaart, 1998), and an application of Chebyscheff’s inequality.

A.2. Stochastic Expansion of the Local Polynomial Estimator. Our proofs use a

particular stochastic expansion of the local polynomial regression estimators ξ̂g. This is a

minor variation of results given in e.g. Masry (1996) or Kong et al. (2010). We require the

following notation. For any s ∈ {0, 1, . . . , lg} let ns =
(
s+dg−1
dg−1

)
be the number of distinct

dg-tuples u with |u| = s. Arrange these dg-tuples as a sequence in a lexicographical order

with the highest priority given to the last position, so that (0, . . . , 0, s) is the first element

in the sequence and (s, 0, . . . , 0) the last element. Let τs denote this 1-to-1 mapping, i.e.
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τs(1) = (0, . . . , 0, s), . . . , τs(ns) = (s, 0, . . . , 0). For each s ∈ {0, 1, . . . , lg} we also define a

ns × 1 vector wgj,s(u) with its kth element given by ((Xgj − u)/hg)
τs(k). Finally, we put

wgj(u) = (1, wgj,1(u)>, . . . , wgj,lg(u)>)>,

Mgn(u) =
1

n

n∑
j 6=i

wgj(u)wgj(u)>Khg(Xgj − u),

Ngn(u) = E(wgj(u)wgj(u)>Khg(Xgj − u)),

ηgn,j(u) = wgj(u)wgj(u)>Khg(Xgj − u)− E(wgj(u)wgj(u)>Khg(Xgj − u)).

To better understand this notation, note that for the simple case that lg = 0, i.e. when

ξ̂g is the Nadaraya-Watson estimator, we have that wgj(u) = 1, that the term Mgn(u) =

n−1
∑n

i=1Khg(Xgi − u) is the usual Rosenblatt-Parzen density estimator, that Ngn(u) =

E(Khg(Xgi − u)) is its expectation, and that ηgn,i(u) = Khg(Xgi − u) − E(Khg(Xgi − u)) is

a mean zero stochastic term with variance of the order O(h
−dg
g ). Also note that with this

notation we can write the estimator ξ̂g(Ugi) as

ξ̂g(Ugi) =
1

n− 1

∑
j 6=i

e>1 Mgn(Ugi)
−1wgj(Ugi)Khg(Xgj − Ugi)Ygj,

where e1 denotes the (1 + lgdg)-vector whose first component is equal to one and whose

remaining components are equal to zero. We also introduce the following quantities:

Bgn(Ugi) = e>1 Ngn(Ugi)
−1E(wgj(Ugi)Khg(Xgj − Ugi)(ξo1(Xgj)− ξo1(Ugi))|Ugi)

Sgn(Ugi) =
1

n

∑
j 6=i

e>1 Ngn(Ugi)
−1wgj(Ugi)Khg(Xgj − Ugi)εgj

Rgn(Ugi) =
1

n

∑
j 6=i

e>1

(
1

n

∑
l 6=i

ηgn,l(Ugi)

)
Ngn(Ugi)

−2wgj(Ugi)Khg(Xgj − Ugi)εgj

We refer to these three terms as the bias, and the first- and second-order stochastic terms,

respectively. Here εgj = Ygj−ξo1(Xgj) is the nonparametric regression residual, which satisfies

E(εgj|Xgj) = 0 by construction. To get an intuition for the behavior of the two stochastic
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terms, it is again instructive to consider simple case that lg = 0, for which

Sgn(Ugi) =
1

nf̄gn(Ugi)

∑
j 6=i

Khg(Xgj − Ugi)εgj and

Rgn(Ugi) =
1

nf̄gn(Ugi)2

(
1

n

∑
l 6=i

(Khg(Xgl − Ugi)− f̄gn(Ugi))

)∑
j 6=i

Khg(Xgj − Ugi)εgj

with E(Khg(Xgj − u)) = f̄gn(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions K1 and G1–G2 the following statements hold for g ∈ {1, 2}

if hg → 0 and log(n)/(nh
dg
g )→ 0 as n→∞:

(i) For uneven lg ≥ 1 the bias Bgn satisfies

max
i∈{1,...,n}

|Bgn(Ugi)| = OP (hlg+1
g ),

and the first- and second-order stochastic terms satisfy

max
i∈{1,...,n}

|Sgn(Ugi)| = OP ((nhdgg / log n)−1/2) and max
i∈{1,...,n}

|Rgn(Ugi)| = OP ((nhdgg / log n)−1).

(ii) For any lg ≥ 0, we have that

max
i∈{1,...,n}

|ξ̂g(Ugi)− ξog(Ugi)−Bgn(Ugi)− Sgn(Ugi)−Rgn(Ugi)| = OP ((nhdgg / log n)−3/2).

(iii) For ‖ · ‖ a matrix norm, we have that

max
i∈{1,...,n}

‖n−1
∑
j 6=i

ηgn,j(Ugi)‖ = OP ((nhdgg / log n)−1/2).

Proof. Follows from well-known arguments as in e.g. Masry (1996) or Kong et al. (2010).

A.3. Proof of Theorem 2(b). Having stated the auxiliary results, we now turn to the

proof of Theorem 2(b). We give a proof of part (a) below. For notational simplicity, we drop

the “DR” subscript on our estimator and write θ̂ instead of θ̂DR. It is straightforward to
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show that θ̂
p→ θo under either condition (a) or (b), and thus we omit the details of proving

this step. Now it follows from the differentiability of ψ with respect to θ and the definition

of θ̂ that

θ̂ − θo = Hn(θ∗, ξ̂)−1 1

n

n∑
i=1

ψ(Zi, θ
o, ξ̂1(U1i), ξ̂2(U2i))

for some θ∗ between θo and θ̂, and Hn(θ, ξ) =
∑n

i=1 ∂θψ(Ziθ, ξ1(U1i), ξ2(U2i)). It then follows

from standard arguments that Hn(θ∗, ξ̂) = H + oP (1). Next, we consider an expansion of

the term

Ψn(θo, ξ̂) = n−1

n∑
i=1

ψ(Zi, θ
o, ξ̂1(U1i), ξ̂2(U2i)).

Using the notation that

ψ1
i = ∂ψ(Zi, θ

o, t, ξo2(U2i))/∂t|t=ξo1(Ui), ψ11
i = ∂2ψ(Zi, θ

o, t, ξo2(U2i))/∂t|t=ξo1(Ui),

ψ2
i = ∂ψ(Zi, θ

o, ξo1(Ui), t)/∂t|t=ξo2(U2i), ψ22
i = ∂2ψ(Zi, θ

o, ξo1(Ui), t)/∂t|t=ξo2(U2i), and

ψ12
i = ∂2ψ(Zi, θ

o, t1, t2)/∂t1∂t2|t1=ξo1(Ui),t2=ξo2(U2i),

we find that because of differentiability conditions on the moment function ψ we have that

Ψn(θo, ξ̂)−Ψn(θo, ξo) =
1

n

n∑
i=1

ψ1
i (ξ̂1(U1i)− ξo1(U1i)) +

1

n

n∑
i=1

ψ2
i (ξ̂2(U2i)− ξo2(U2i))

+
1

n

n∑
i=1

ψ11
i (ξ̂1(U1i)− ξo1(U1i))

2 +
1

n

n∑
i=1

ψ22
i (ξ̂2(U2i)− ξo2(U2i))

2

+
1

n

n∑
i=1

ψ12
i (ξ̂1(U1i)− ξo1(U1i))(ξ̂2(U2i)− ξo2(U2i))

+OP (‖ξ̂1 − ξo1‖3
∞) +OP (‖ξ̂2 − ξo2‖3

∞).

By Lemma 2(i), the two “cubic” remainder terms are both of the order oP (n−1/2) under the

conditions of Theorem 2(b), and thus also under those of Theorem 2(a). In Lemma 3–5

below, we show that the remaining five terms on the right hand side of the previous equation
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are also all of the order oP (n−1/2) under the conditions of Theorem 2(b). The asymptotic

normality result then follows from a simple application of the Central Limit Theorem.

The proofs of the following Lemmas repeatedly use the result that the smoothness con-

ditions on the moment function ψ combined with the DR property imply that

0 = E(ψ1
i λ1(U1i)) = E(ψ11

i λ1(U1i)
2) = E(ψ2

i λ2(U2i)) = E(ψ22
i λ2(U2i)

2) (A.1)

for all functions λ1 and λ2 such that ξo1 + tλ1 ∈ Ξ1 and ξo2 + tλ2 ∈ Ξ2 for any t ∈ R with |t|

sufficiently small. To see why that is the case, consider the first equality (the argument is

similar for the remaining ones). By dominated convergence, we have that

E(ψ1
i λ1(U1i)) = lim

t→0

Ψ(θo, ξo1 + tλ1, ξ
o
2)−Ψ(θo, ξo1, ξ

o
2)

t
= 0

where the last equality follows since the numerator is equal to zero by the DR property.

Lemma 3. Under the conditions of Theorem 2(b), the following statements hold:

(i)
1

n

n∑
i=1

ψ1(Zi)(ξ̂1(U1i)− ξo1(U1i)) = oP (n−1/2),

(ii)
1

n

n∑
i=1

ψ2(Zi)(ξ̂2(U2i)− ξo2(U2i)) = oP (n−1/2).

Proof. We show the statement for a generic g ∈ {1, 2}. From Lemma 2 and the restrictions

on the bandwidth, it follows that

1

n

n∑
i=1

ψgi (ξ̂g(Ugi)− ξog(Ugi)) =
1

n

n∑
i=1

ψgi (Bgn(Ugi) + Sgn(Ugi) +Rgn(Ugi))

+OP (log(n)3/2n−3/2h−3dg/2
g ),

and since the second term on the right-hand side of the previous equation is of the order

oP (n−1/2) due to the restrictions on the bandwidth, it suffices to study the first term. As a
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first step, we find that

1

n

n∑
i=1

ψgiBgn(Ugi) = E(ψgiBgn(Ugi)) +OP (hlg+1
g n−1/2)

= OP (hlg+1
g n−1/2),

where the first equality follows from Chebyscheff’s inequality, and the second equality follows

from Lemma 2 and the fact that by equation (A.1) we have that E(ψgiBgn(Ugi)) = 0. Next,

consider the term

1

n

n∑
i=1

ψgi Sgn(Ugi) =
1

n2

∑
i

∑
j 6=i

ψgi e
>
1 Ngn(Ugi)

−1wgj(Ugi)Khg(Xgj − Ugi)εgi.

This is a second order U-Statistic (up to a bounded, multiplicative term), and since by

equation (A.1) we have that E(ψgi e
>
1 Ngn(Ugi)

−1wgj(Ugi)Khg(Xgj−Ugi)|Xgj) = 0, its kernel is

first-order degenerate. It then follows from Lemma 1 and some simple variance calculations

that

1

n

n∑
i=1

ψgi Sgn(Ugi) = OP (n−1h−dg/2g ).

Finally, we consider the term

1

n

n∑
i=1

ψgiRgn(Ugi) = Tn,1 + Tn,2,

where

Tn,1 =
1

n3

∑
i

∑
j 6=i

ψgi e
>
1 ηgn,j(Ugi)Nn(u)−2wgj(Ugi)Khg(Xgj − Ugi)εgj and

Tn,2 =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψgi e
>
1 ηgn,j(Ugi)Nn(Ugi)

−2wgl(Ugi)Khg(Xgl − Ugi)εgl.

Using equation (A.1), one can see that Tn,2 is equal to a third-order U-Statistic (up to a
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bounded, multiplicative term) with second-order degenerate kernel, and thus

Tn,2 = OP (n−3/2h−dgg )

by Lemma 1 and some simple variance calculations. On the other hand, the term Tn,1 is

equal to n−1 times a second order U-statistic (up to a bounded, multiplicative term), with

first-order degenerate kernel, and thus

Tn,1 = n−1 ·OP (n−1h−3dg/2
g )) = n−1/2h−dg/2g OP (Tn,2).

The statement of the lemma thus follows if hg → 0 and n2h
3dg
g →∞ as n→∞, which holds

due to the restrictions on the bandwidth. This completes our proof.

Remark 10. Without any restrictions on the structure of the moment condition, the term

n−1
∑n

i=1 ψ
g
iBgn(Ugi) in the above proof would be of the larger order O(h

lg+1
g ), which is the

usual order of the bias due to smoothing the nonparametric component. The fact that DR

moment condition has a zero functional derivative with respect to the nuisance functions is

what removes this term here. Note however that there are also non-DR moment conditions

with this property, such as those where the corresponding moment function is an influence

function in the underlying semiparametric model.

Lemma 4. Under the conditions of Theorem 2(b), the following statements hold:

(i)
1

n

n∑
i=1

ψ11
i (ξ̂1(U1i)− ξo1(U1i))

2 = oP (n−1/2),

(ii)
1

n

n∑
i=1

ψ22
i (ξ̂2(U2i)− ξo2(U2i))

2 = oP (n−1/2).

Proof. We show the statement for a generic g ∈ {1, 2}. Note that by Lemma 2 we have that

(ξ̂g(u)− ξog(u))2 =
6∑

k=1

Tn,k(u) +OP

( log(n)

nh
dg
g

)3/2
(OP (hlg+1

g ) +OP

(
log(n)

nhg

))
,
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where Tn,1(u) = Bgn(u)2, Tn,2(u) = Sgn(u)2, Tn,3(u) = Rgn(u)2, Tn,4(u) = 2Bgn(u)Sgn(u),

Tn,5(u) = 2Bgn(u)Rgn(u), and Tn,6(u) = 2Sgn(u)Rgn(u). Since the second term on the

right-hand side of the previous equation is of the order oP (n−1/2) due to the restrictions on

the bandwidth, it suffices to show that we have that n−1
∑n

i=1 ψ
gg
i Tn,k(Ugi) = oP (n−1/2) for

k ∈ {1, . . . , 6}. Our proof proceeds by obtaining sharp bounds on n−1
∑n

i=1 ψ
gg
i Tn,k(Ugi) for

k ∈ {1, 2, 4, 5} using equation A.1 and Lemma 1, and crude bounds for k ∈ {3, 6} simply

using the uniform rates derived in Lemma 2. First, for k = 1 we find that

1

n

n∑
i=1

ψggi Tn,1(Ugi) = E(ψggi Bgn(Ugi)
2) +OP (n−1/2h2lg+2

g ) = OP (n−1/2h2lg+2
g )

because E(ψggi Bgn(Ugi)
2) = 0 by equation (A.1). Second, for k = 2 we can write

1

n

n∑
i=1

ψggi Tn,2(Ugi) = Tn,2,A + Tn,2,B

where

Tn,2,A =
1

n3

∑
i

∑
j 6=i

ψggi (e>1 Ngn(Ugi)
−1wgj(Ugi))

2Khg(Xgj − Ugi)2ε2
gj

Tn,2,B =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψggi e
>
1 Ngn(Ugi)

−1wgj(Ugi)Khg(Xgj − Ugi)εgj

· e>1 Ngn(Ugi)
−1wgl(Ugi)Khg(Xgl − Ugi)εgl

Using equation (A.1), one can see that Tn,2,B is equal to a third-order U-Statistic with a

second-order degenerate kernel function (up to a bounded, multiplicative term), and thus

Tn,2,B = OP (n−3/2h−dgg ).

On the other hand, the term Tn,2,A is (up to a bounded, multiplicative term) equal to n−1

times a mean zero second order U-statistic with non degenerate kernel function, and thus

Tn,2,A = n−1OP (n−1/2h−dg + n−1h−3dg/2
g ) = OP (n−3/2h−dg) = OP (Tn,2,B).
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Third, for k = 4 we use again equation (A.1) and Lemma 1 to show that

1

n

n∑
i=1

ψggi Tn,4(Ugi) =
1

n2

n∑
i=1

∑
j 6=i

ψggi Bgn(Ugi)e
>
1 Ngn(Ugi)

−1wgj(Ugi)Khg(Xgj − Ugi)εgj

= OP (n−1h−dg/2g ) ·O(hlg+1
g ),

where the last equality follows from the fact that n−1
∑n

i=1 ψ
gg
i Tn,4(Ugi) is (again, up to a

bounded, multiplicative term) equal to a second order U-statistic with first-order degenerate

kernel function. Fourth, for k = 5, we can argue as in the final step of the proof of Lemma 3

to show that

1

n

n∑
i=1

ψ11(Zi)Tn,5(Ugi) = OP (n−3/2h−dgg hlg+1
g ).

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1

n

n∑
i=1

ψggi Tn,3(Ugi) = OP (‖Rgn‖2
∞) = OP (log(n)2n−2h−2dg

g ),

1

n

n∑
i=1

ψggi Tn,6(Ugi) = OP (‖Rgn‖∞) ·OP (‖Sgn‖∞) = OP (log(n)3/2n−3/2h−3dg/2
g ).

The statement of the lemma thus follows if hg → 0 and n2h
3dg
g / log(n)3 → ∞ as n → ∞,

which holds due to the bandwidth restrictions. This completes our proof.

Remark 11. Without the DR property, the term Tn,2,B in the above proof would be (up to a

bounded, multiplicative term) equal to a third-order U-Statistic with a first-order degenerate

kernel function (instead of a second order one). In this case, we would find that

Tn,2,B = OP (n−1h−dg/2g ) +OP (n−3/2h−dgg ) = OP (n−1h−dg/2g ).

On the other hand, in the absence of the DR property, the term Tn,2,A would be (up to a

bounded, multiplicative term) equal to a n−1 times a non-mean-zero second-order U-Statistic
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with a non-degenerate kernel function, and thus we would have

Tn,2,A = O(n−1h−dgg ) +OP (n−3/2h−dg) +OP (n−2h−2dg) = O(n−1h−dg) + oP (n−1h−dg).

The leading term of an expansion of the sum Tn,2,A + Tn,2,B would thus be a pure bias term

of order n−1h
−dg
g . This term is analogous to the “degrees of freedom bias” in Ichimura and

Linton (2005), and the “nonlinearity bias” or “curse of dimensionality bias” in Cattaneo

et al. (2013). In our context, the DR property of the moment conditions removes this term,

which illustrates how our structure acts like a bias correction method. For a non-DR moment

condition based on an influence function this term would not vanish.

Lemma 5. Under the conditions of Theorem 2(b), the following statement holds:

1

n

n∑
i=1

ψ12
i (ξ̂1(U1i)− ξo1(U1i))(ξ̂2(U2i)− ξo2(U2i)) = oP (n−1/2).

Proof. By Lemma 2, one can see that uniformly over u = (u1, u2) we have that

(ξ̂1(u1)− ξo1(u1))(ξ̂2(u2)− ξo2(u2))

=
9∑

k=1

Tn,k(u) +OP

((
log(n)

nhd11

)3/2
)(

OP (hl2+1
2 ) +OP

(
log(n)

nhd22

))

+OP

((
log(n)

nhd22

)3/2
)(

OP (hl1+1
1 ) +OP

(
log(n)

nhd11

))
where Tn,1(u) = B1,n(u1)B2,n(u2), Tn,2(u) = B1,n(u1)S2,n(u2), Tn,3(u) = B1,n(u1)R2,n(u2),

Tn,4(u) = S1,n(u1)B2,n(u2), Tn,5(u) = S1,n(u1)S2,n(u2), Tn,6(u) = S1,n(u1)R2,n(u2), Tn,7(u) =

R1,n(u1)B2,n(u2), Tn,8(u) = R1,n(u1)S2,n(u2), and Tn,9(u) = R1,n(u1)R2,n(u2). Since the last

two terms on the right-hand side of the previous equation are easily of the order oP (n−1/2)

due to the restrictions on the bandwidth, it suffices to show that for any for k ∈ {1, . . . , 9}

we have that n−1
∑n

i=1 ψ
12
i Tn,k(Ui) = oP (n−1/2). As in the proof of Lemma 4, we proceed by

obtaining sharp bounds on n−1
∑n

i=1 ψ
12
i Tn,k(Ui) for k ∈ {1, . . . , 5, 7} using a similar strategy

as in the proofs above, and crude bounds for k ∈ {6, 8, 9} simply using the uniform rates
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derived in Lemma 2. First, arguing as in the proof of Lemma 3 and 4 above, we find that

1

n

n∑
i=1

ψ12
i Tn,1(Ui) = E(ψ12

i B1,n(U1i)B2,n(U2i)) +OP (n−1/2hl1+1
1 hl2+1

2 ) = OP (hl1+1
1 hl2+1

2 ),

where the last equation follows from the fact that E(ψ12
i B1,n(U1i)B2,n(U2i)) = O(hl1+1

1 hl2+1
2 ).

Second, for k = 2 we consider the term

1

n

∑
i

ψ12
i Tn,2(Ui) =

1

n2

∑
i

∑
j 6=i

ψ12
i B1,n(U1i)e

>
1 N2,n(U2i)

−1w2j(U2i)Kh2(X2,j − U2i)ε2,j.

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with

non-degenerate kernel function. Lemma 1 and some variance calculations then imply that

1

n

∑
i

ψ12
i Tn,2(Ui) = OP (n−1/2hl1+1

1 ) +OP (n−1h
−d2/2
2 hl1+1

1 ).

Using the same argument, we also find that

1

n

∑
i

ψ12
i Tn,4(Ui) = OP (n−1/2hl2+1

2 ) +OP (n−1h
−d1/2
1 hl2+1

2 ).

For k = 3, we can argue as in the final step of the proof of Lemma 3 to show that

1

n

n∑
i=1

ψ12
i Tn,3(Ui) = OP (n−1h

−d2/2
2 hl1+1

1 ) +OP (n−3/2h−d22 hl1+1
1 ),

and for the same reason we find that

1

n

n∑
i=1

ψ12
i Tn,7(Ui) = OP (n−1h

−d1/2
1 hl2+1

2 ) +OP (n−3/2h−d11 hl2+1
2 ).

Next, we consider the case k = 5. This term is the only one for which we exploit the

condition (3.4). We start by considering the decomposition

1

n

∑
i

ψ12
i Tn,5(Ui) = Tn,5,A + Tn,5,B,
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where

Tn,5,A =
1

n3

∑
i

∑
j 6=i

ψ12
i (e>1 N1,n(U1i)

−1w1j(U1i)Kh1(X1j − U1i)ε1j)

· (e>1 N2,n(U2i)
−1w2j(U2i)Kh2(X2j − U2i)ε2j),

Tn,5,B =
1

n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψ12
i e
>
1 N1n(U1i)

−1w1j(U1i)Kh1(X1,j − U1i)ε1j

· e>1 N2,n(U2i)
−1w2l(U2i)Kh2(X2l − U2i)ε2l.

Here term Tn,5,B is equal to a third-order U-Statistic (up to a bounded, multiplicative term)

with first-order degenerate kernel. Finding the variance of this U-Statistic is slightly more

involved, as it depends on the number of joint components of U1 and U2. Using Lemma 1

and some tedious calculations, we obtain the following bound:

Tn,5,B = OP (n−1 max{h−d1/21 , h
−d2/2
2 }) +OP (n−3/2h

−d1/2
1 h

−d2/2
2 ).

This bound is sufficient four our purposes. Since this step of the proof is important, we are

providing some more details about this calculation. Let λijl = Kh1(X1j − U1i)ε1jKh2(X2l −

U2i)ε2l. It is easy to see that the variance of T̃n,5,B = n−3
∑

i

∑
j 6=i
∑

l 6=i,j λijl is of the same

order as Tn,5,B, and thus we focus on the former. Define Zi = (U1i, U2i), Zj = (X1j, ε1j)

and Zl = (X1l, ε1l). It is easy to see that for distinct values of i, j and l we have that

E(λijl) = E(λijl|Zi) = E(λijl|Zj) = E(λijl|Zl) = 0, and thus T̃n,5,B has mean zero and first-

order degenerate kernel. It also holds that E(λijl|Zi,Zj) = E(λijl|Zi,Zl) = 0. Using the

notation from Lemma 1, we thus have that

ρ2
n,2 = Var(E(λijl|Zl,Zj))

= Var

(∫
Kh1(X1j − u1)Kh2(X2l − u2)fU(u1, u2)du1du2ε1jε2l

)
.

The order of ρn,2 thus depends on the number of joint components of U1 and U2, or, more
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precisely, the effective dimension of the support of (U1, U2). The “best case” would be that

(U1, U2) has effective support of dimension d1 + d2, in which case ρn,2 = O(1). The “worst

case” would be that U1 = U2, in which case ρn,2 = O(max{h−d1/21 , h
−d2/2
2 ). This “worst case”

bound is sufficient for our purposes. Now consider

ρ2
n,3 = Var(E(λijl|Zi,Zj,Zl))

= E
(
h−2d1

1 K((X1j − U1i)/h1)2h−2d2
2 K((X2l − U2i)/h2)2ε2

1jε
2
2l

)
= E

(∫
h−2d1

1 K((x1 − U1i)/h1)2σ2
1(x1)fX1(x1)dx1

·
∫
h−2d2

2 K((x2 − U2i)/h2)2σ2
2(x2)fX2(x2)dx2

)
= E

(∫
h−d11 K(t1)2σ2

1(U1i + t1h1)fX1(U1i + t1h1)dt1

·
∫
h−d22 K(t2)2σ2

2(U2i + t2h2)fX2(U2i + t2h2)dt2

)
= O(h−d11 h−d22 ).

From Lemma 1 we then obtain the desired result that

T̃n,5,B = OP (n−1ρn,2) +OP (n−3/2ρn,3)

= OP (n−1 max{h−d1/21 , h
−d2/2
2 }) +OP (n−3/2h

−d1/2
1 h

−d2/2
2 ),

Now consider the term Tn,5,A, which is equal to n−1 times a second order U-statistic (up

to a bounded, multiplicative term). Since condition (3.4) implies that E(ε1ε2|X1, X2) = 0,

we find that this U-Statistic has mean zero. The calculation of its variance is again slightly

more involved, and the exact result depends on the number of joint components of U1 and

U2, and on the number of joint components of X1 and X2. After some calculations similar
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to those detailed above, we obtain the bound that

Tn,5,A = n−1 ·OP (n−1/2 max{h−d11 , h−d22 }+OP (n−1 max{h−d1/21 h−d22 , h−d11 h
−d2/2
2 }))

= n−1/2OP (max{nh−d11 , nh−d22 }+ max{n−1/2h
−d1/2
1 nh−d22 , nh−d11 n−1/2h

−d2/2
2 })

= oP (n−1/2)

under our restrictions on the bandwidths (in fact, our restrictions imply the much stronger

result that Tn,5,A = OP (n−5/6)). We are again providing some more details about this

calculation. Let λij = Kh1(X1j − U1i)ε1jKh2(X2j − U2i)ε2j. It is easy to see that T̃n,5,A =

n−3
∑

i

∑
j 6=i λij is of the same order as Tn,5,A, and thus we focus on the former. Define

Zi = (U1i, U2i) and Zj = (X1j, X2j, ε1j, ε2j). We then have that for i 6= j

E(λij) = E[E(ε1jε2j|Zi, Xj)Kh1(X1j − U1i)Kh2(X2j − U2i)]

= E[E(ε1jε2j|Xj)Kh1(X1j − U1i)Kh2(X2j − U2i)] = 0,

where the last equality follows from (3.4) and the fact that the data are i.i.d. Hence T̃n,5,A is

mean zero. We also clearly have that E(λij|Zi) = 0. Using notation from Lemma 1, it then

follows that

ρ2
n,1 = Var(E(λij|Zj))

= Var(

∫
Kh1(X1j − u1)Kh2(X2j − u2)fU(u1, u2)du1du2ε1jε2j)

The order of ρn,1 thus depends on the number of joint components of U1 and U2, and of X1

and X2; or, more precisely, the effective dimension of the support of (U1, U2) and (X1, X2).

The “best case” would be that (U1, U2) has effective support of dimension d1 + d2, in which

case ρn,1 = O(1). The “worst case” would be that U1 = U2 and X1 = X2, in which case

ρn,1 = O(max{h−d11 , h−d22 ). This “worst case” bound is sufficient for our purposes. Now
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consider

ρ2
n,2 = Var(E(λij|Zl,Zj))

= E
(
h−2d1

1 K((X1j − U1i)/h1)2h−2d2
2 K((X2j − U2i)/h2)2ε2

1jε
2
2j

)
.

Under the “worst case” scenario that that U1 = U2 and X1 = X2 we then find that

ρ2
n,2 = O(max{h−d11 h−2d2

2 , h−2d1
1 h−d22 }).

From Lemma 1 we then obtain the desired result that

T̃n,5,A = n−1
(
OP (n−1/2ρn,1) +OP (n−1ρn,2)

)
= OP (n−3/2 max{h−d11 , h−d22 }) +OP (n−2 max{h−d1/21 h−d22 , h−d11 h

−d2/2
2 }).

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2 for the

following terms:

1

n

n∑
i=1

ψ12
i Tn,6(Ui) = OP (‖S1,n‖∞) ·OP (‖R2,n‖∞) = OP (log(n)5/2n−5/2h−d11 h

−3d2/2
2 ),

1

n

n∑
i=1

ψ12
i Tn,8(Ui) = OP (‖R1,n‖∞) ·OP (‖S2,n‖∞) = OP (log(n)5/2n−5/2h−d22 h

−3d1/2
1 ),

1

n

n∑
i=1

ψ12
i Tn,9(Ui) = OP (‖R1,n‖∞) ·OP (‖R2,n‖∞) = OP (log(n)3n−3h

−3d1/2
1 h

−3d2/2
2 ).

The statement of the Lemma then follows from the restrictions on the bandwidth. This

completes our proof.

Remark 12. The derivation of the order of the term Tn,5,A is the only step in our proof

that requires the orthogonality condition (3.4). Without this condition, the kernel of the

respective U-Statistic would not be mean zero, and in general we would only find that

Tn,5,A = OP (n−1 max{h−d11 , h−d22 }).
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A.4. Proof of Theorem 2(a). This result can be shown by following the steps of the

proof of Theorem 2(b), and adapting the argument as indicated in the Remarks 10–12.

A.5. Proof of Theorem 1. The estimator has the same structure as the one studied in

Theorem 2(b), and thus the statement follows from the same kind of arguments. Note that

the condition (3.4) is satisfied here for reasons already explained in the main part of the

paper.

A.6. Proof of Proposition 1. The estimator has the same structure as the one studied

in Theorem 2(b), and thus the statement of the proposition follows from the same kind of

arguments. See also Linton (1995) for a similar derivation.

A.7. Proof of Proposition 2. The main difference between this estimator and the one

studied in Theorem 2 is that only one of the nuisance functions is a conditional expectation,

whereas the other is a density function. This actually simplifies the problem, as a stochastic

expansion of the kind given in Lemma 2 is easier to obtain of a substantially simpler form

for kernel density estimators relative to the local polynomial estimator. In particular, it is

easy to see that under the conditions of the proposition we have that

ξ̂2s(Xi) = ξo2s(Xi) +Bsn(Xi) + Ssn(Xi) for s = 1, 2.

Here B1n(Xi) = E(Kh(X−Xi)|Xi) = O(hl+1) is a deterministic bias function and S1n(Xi) =∑
j 6=i(Kh(Xj−Xi)−E(Kh(X−Xi)|Xi))/n = OP ((nhd/ log(n))−1/2) is a mean zero stochastic

term; and the terms B2n and S2n are defined analogously. The proof then follows from using

the same arguments as in the one of Theorem 2(b), but using this simpler expansion of the

kernel density estimator.
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A.8. Proof of Proposition 3. This estimator differs from the one studied in Theorem 2

in that only one of the nuisance functions is a conditional expectation, whereas the other is a

density function. Moreover, these two nuisance function enter the moment function through

both their levels and their first order derivatives. The proof then follows from using the

same arguments as in the one of Theorem 2(b), using an expansion for the estimate of the

derivative of the conditional expectation function function similar to the one in Lemma 2.

See Kong et al. (2010) for such a result. The estimates of the density and its derivative can

be handled as described in the sketch of the proof of Proposition 2.
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Table 2: Simulation results for IPW: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

h2 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h1)
.05 .08 .13 .20 .32 .50

θ̂IPW−K
.05 0.489 0.398 0.330 0.83 0.83 0.82 0.83 0.84 0.87
.08 0.373 0.329 0.265 0.87 0.87 0.87 0.87 0.89 0.90
.13 0.323 0.289 0.239 0.89 0.88 0.88 0.88 0.90 0.91
.20 0.268 0.189 0.232 0.91 0.91 0.91 0.91 0.91 0.93
.32 0.229 0.022 0.229 0.93 0.92 0.92 0.92 0.93 0.94
.50 0.288 0.245 0.228 0.88 0.88 0.88 0.88 0.88 0.89

h2 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h1)
.05 .08 .13 .20 .32 .50

θ̂IPW−TK
.05 0.639 0.282 0.560 0.83 0.80 0.84 0.92 0.99 0.79
.08 0.934 0.020 0.934 0.76 0.73 0.77 0.89 0.99 0.70
.13 0.788 0.205 0.747 0.76 0.73 0.77 0.90 0.99 0.67
.20 0.646 0.176 0.615 0.81 0.79 0.83 0.94 0.99 0.74
.32 0.397 0.354 0.272 0.90 0.88 0.92 0.98 1.00 0.86
.50 0.252 0.153 0.229 0.94 0.93 0.94 0.98 1.00 0.91

h2 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h1)
1 2 3 4 7 10

θ̂IPW−OS
1 0.497 0.515 0.232 0.74 0.73 0.73 0.73 0.73 0.73
2 0.244 0.063 0.240 0.93 0.91 0.91 0.91 0.91 0.91
3 0.232 0.028 0.231 0.95 0.93 0.92 0.92 0.92 0.92
4 0.221 0.009 0.221 0.95 0.93 0.93 0.93 0.92 0.92
7 0.222 0.011 0.222 0.95 0.93 0.93 0.93 0.93 0.92

10 0.236 0.028 0.236 0.94 0.92 0.92 0.92 0.92 0.91

h2 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h1)
.50 .65 .80 .95 1.10 1.25

θ̂IPW−SP
.50 0.359 0.339 0.244 0.82 0.82 0.82 0.83 0.83 0.84
.65 0.252 0.170 0.223 0.89 0.90 0.90 0.90 0.90 0.91
.80 0.226 0.077 0.220 0.91 0.92 0.92 0.92 0.92 0.93
.95 0.233 0.025 0.232 0.91 0.92 0.92 0.92 0.92 0.93

1.10 0.258 0.181 0.225 0.89 0.89 0.90 0.90 0.90 0.91
1.25 0.613 0.633 0.212 0.64 0.65 0.65 0.65 0.65 0.65

h2 n×MSE
√
n×BIAS n×VAR Coverage Rate

θ̂IPW−BS
.05 0.271 0.011 0.271 0.95
.08 0.301 0.062 0.298 0.96
.13 0.328 0.185 0.294 0.96
.20 0.275 0.156 0.251 0.95
.32 0.264 0.209 0.220 0.91
.50 0.512 0.552 0.207 0.74

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and

bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the

interquartile range were removed for the computation of the summary statistics.
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Table 3: Simulation results for REG: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

h1 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h2)
.05 .08 .13 .20 .32 .50

θ̂REG−K
.05 0.210 0.052 0.207 0.95 0.95 0.94 0.94 0.94 0.93
.08 0.227 0.136 0.208 0.94 0.94 0.93 0.93 0.93 0.92
.13 0.282 0.266 0.211 0.91 0.91 0.91 0.90 0.90 0.89
.20 0.308 0.303 0.216 0.89 0.89 0.89 0.88 0.88 0.87
.32 0.211 0.030 0.210 0.95 0.95 0.95 0.94 0.94 0.94
.50 0.295 0.313 0.197 0.92 0.92 0.91 0.91 0.90 0.88

h1 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h2)
.05 .08 .13 .20 .32 .50

θ̂REG−TK
.05 0.926 0.021 0.925 0.84 0.83 0.83 0.83 0.84 0.82
.08 0.643 0.011 0.643 0.87 0.86 0.86 0.87 0.87 0.86
.13 0.856 0.152 0.833 0.90 0.89 0.89 0.89 0.89 0.88
.20 3.713 0.496 3.467 0.82 0.81 0.81 0.82 0.83 0.81
.32 8.592 0.281 8.514 0.99 0.99 0.98 0.99 0.99 0.99
.50 0.228 0.157 0.203 0.95 0.94 0.93 0.94 0.94 0.93

h1 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h2)
1 2 3 4 7 10

θ̂REG−OS
1 0.612 0.652 0.187 0.67 0.73 0.75 0.75 0.75 0.75
2 0.204 0.081 0.197 0.93 0.94 0.94 0.94 0.94 0.94
3 0.203 0.016 0.203 0.93 0.94 0.94 0.94 0.94 0.94
4 0.203 0.009 0.203 0.93 0.93 0.94 0.94 0.94 0.94
7 0.206 0.001 0.206 0.93 0.93 0.93 0.93 0.93 0.93

10 0.218 0.004 0.217 0.92 0.93 0.93 0.93 0.93 0.93

h1 n×MSE
√
n×BIAS n×VAR

Coverage Rate (h2)
.50 .65 .80 .95 1.10 1.25

θ̂REG−SP
.50 0.209 0.004 0.209 0.93 0.93 0.93 0.93 0.93 0.92
.65 0.205 0.003 0.205 0.93 0.93 0.93 0.93 0.93 0.93
.80 0.203 0.003 0.203 0.93 0.94 0.93 0.94 0.93 0.93
.95 0.201 0.006 0.200 0.94 0.94 0.94 0.94 0.94 0.93

1.10 0.203 0.091 0.195 0.94 0.94 0.94 0.94 0.94 0.93
1.25 0.331 0.381 0.186 0.86 0.87 0.87 0.87 0.86 0.84

h1 n×MSE
√
n×BIAS n×VAR Coverage Rate

θ̂REG−BS
.05 0.210 0.050 0.207 0.94
.08 0.227 0.134 0.209 0.93
.13 0.282 0.267 0.211 0.90
.20 0.311 0.309 0.216 0.89
.32 0.212 0.038 0.210 0.94
.50 0.290 0.305 0.197 0.87

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and

bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the

interquartile range were removed for the computation of the summary statistics.
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