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Abstract

We propose new confidence sets (CSs) for the regression discontinuity parameter
in fuzzy designs. Our CSs are based on local linear regression, and are bias-aware,
in the sense that they take possible bias explicitly into account. Their construction
shares similarities with that of Anderson-Rubin CSs in exactly identified instrumen-
tal variable models, and thereby avoids issues with “delta method” approximations
that underlie most commonly used existing inference methods for fuzzy regression dis-
continuity analysis. Our CSs are asymptotically equivalent to existing procedures in
canonical settings with strong identification and a continuous running variable. How-
ever, they are also valid under a wide range of other empirically relevant conditions,
such as setups with discrete running variables, donut designs, and weak identification.

1. INTRODUCTION
Regression discontinuity designs (Thistlethwaite and Campbell, 1960; Hahn et al., 2001) can
deliver credible identification of treatment effects from observational data in settings where
the probability of receiving the treatment changes discontinuously with a running variable at
some known threshold value. Such designs are called sharp (SRD) if the probability changes
from zero to one, and fuzzy (FRD) otherwise. With both types of designs, methods based
on local linear regression are widely used in empirical practice for estimation and inference.

The confidence intervals (CIs) typically reported in empirical FRD studies are obtained
by applying techniques for handling smoothing bias, such as robust bias correction (Calonico
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et al., 2014) or bias-aware critical values (Armstrong and Kolesár, 2018), to a delta method
(DM) approximation of the FRD estimator. Such DM CIs can be unreliable in practice,
however, if the running variable is not continuously distributed with full support around the
cutoff, or the jump in treatment probabilities is “small”. These limitations are important
because empirical researchers often face running variables like test scores or class sizes that
take only a limited number of distinct values, “donut designs” (Barreca et al., 2011) that
exclude units close to the cutoff to increase the credibility of causal estimates, or weakly
identified setups where treatment assignment only has a moderate impact on treatment
probabilities.1

In this paper, we propose a new class of FRD confidence sets (CSs) that are not subject
to these issues. The idea is to apply a bias-aware approach, which takes possible finite
sample biases into account, to a particular local linear SRD estimator that is conceptually
similar to an Anderson-Rubin statistic in a linear IV model (Staiger and Stock, 1997; Feir
et al., 2016). We show that the resulting CSs are “honest” in the sense of Li (1989), meaning
that they have correct asymptotic coverage uniformly over a class of conditional expectation
functions of outcomes and treatments with bounded second derivatives, irrespective of the
distribution of the running variable or the strength of identification. We also show that
our CSs are asymptotically equivalent to bias-aware DM CIs in settings with a continuous
running variable and strong identification.

Regression discontinuity methods that explicitly take possible bias into account have been
shown to have favorable theoretical and practical properties, for instance, by Armstrong and
Kolesár (2018, 2020), Kolesár and Rothe (2018) and Imbens and Wager (2019). The CSs
in this paper complement these methods, as they allow for reliable FRD inference settings
where DM CIs can fail without sacrificing efficiency in the canonical setup. Our approach
is related to that of Feir et al. (2016), who also consider Anderson-Rubin-type statistics in
FRD designs with potentially small jumps in treatment probabilities, but differs in that it
allows for discrete (or otherwise irregularly supported) running variables, takes potential
bias explicitly into account, and includes a method for choosing bandwidths in practice.

1To illustrate the scope of the issue, we surveyed the articles published between 2015 and 2021 in the
“Top 5” economics journals. We found 20 papers that used a fuzzy regression discontinuity design as one of
their main empirical specification; 9 of which had an “irregular support” (in the sense of having less than 100
support points within the bandwidth window on each side of the cutoff), and one was potentially affected by
weak identification (in the sense that the reported first stage estimate differed by less than three standard
errors from zero).
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2. SETUP AND PRELIMINARIES
Let Yi ∈ R be the outcome, Ti ∈ {0, 1} the actual treatment status, Zi ∈ {0, 1} the assigned
treatment, and Xi ∈ R the running variable of the ith unit in a random sample of size n

from a large population. Treatment is assigned if the running variable falls above a known
cutoff that we normalize to zero, so that Zi = 1{Xi ≥ 0}. The parameter of interest is
θ = τY /τT , where for a generic random variable Wi we write µW (x) = E(Wi|Xi = x) for
is its conditional expectation function given the running variable; µW+ = limx↓0 µW (x) and
µW− = limx↑0 µW (x) for the right and left limit at the cutoff; and τW = µW+ − µW− for
the corresponding jump.2 In a potential outcomes framework with certain continuity and
monotonicity conditions (e.g. Hahn et al., 2001), the parameter θ has a causal interpretation
as the local average treatment effect among units at the cutoff whose treatment decision is
affected by the assignment rule.

Our goal is to construct powerful confidence sets Cα that cover the parameter θ in large
samples with at least probability 1 − α, uniformly over (µY , µT ) in some function class F
that embodies shape restrictions imposed by the analyst:3

lim inf
n→∞

inf
(µY ,µT )∈F

P(θ ∈ Cα) ≥ 1− α. (2.1)

Following Li (1989), we refer to such CSs as honest with respect to F . This is a stronger
requirement than correct pointwise asymptotic coverage:

lim inf
n→∞

P(θ ∈ Cα) ≥ 1− α for all (µY , µT ) ∈ F . (2.2)

In particular, under (2.1) we can always find a sample size n such that the coverage probabil-
ity of Cα is not below 1−α by more than an arbitrarily small amount for every (µY , µT ) ∈ F .
Under (2.2) there is no such guarantee, and even in very large samples the coverage prob-
ability of Cα could be poor for some (µY , µT ) ∈ F . Since we do not know in advance
which function pair is the correct one, honesty as in (2.1) is necessary for good finite sample
coverage of Cα across data generating processes.

As in Imbens and Wager (2019) or Armstrong and Kolesár (2020), we specify F as a
smoothness class. Specifically, let FH(B) = {f1(x)1{x ≥ 0} − f0(x)1{x < 0} : ‖f ′′

w‖∞ ≤
B,w = 0, 1} be the Hölder-type class of real functions that are potentially discontinuous at

2We write f+ = limx↓0 f(x) and f− = limx↑0 f(x) for generic functions f throughout the paper.
3Note that we leave the dependence of the probability measure P and the parameter θ on µY and µT

implicit in our notation. Each function pair (µY , µT ) corresponds to a single distribution of (Y, T,X,Z) =
(µY (X) + ϵM ,1{µT (X) ≥ ϵT }, X, Z), where (ϵM , ϵT ) is some fixed random vector.
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zero, are twice differentiable on either side of the threshold, and whose second derivatives are
uniformly bounded by some constant B > 0; and let F δ

H(B) = {f ∈ FH(B) : |f+ − f−| > δ}
be a similar class of functions whose jump at zero is larger than some δ ≥ 0. We then assume
that there are constants BY and BT , whose choice we discuss in Section 6.3, such that

(µY , µT ) ∈ FH(BY )×F0
H(BT ) ≡ F . (2.3)

As F is a Cartesian product, this rules out cross-restrictions between µY and µT . Note that
we impose µT ∈ F0

H(BT ), and thus τT 6= 0, only to ensure that θ = τY /τT is well-defined.
We explicitly allow τT to be arbitrarily close to zero.

If the running variable is discrete, or more generally such that there are gaps in its support,
condition (2.3) is understood to mean that there exists a function pair (µY , µT ) ∈ F such
that (µY (Xi), µT (Xi)) = (E(Yi|Xi),E(Ti|Xi)) with probability one (cf. Kolesár and Rothe,
2018). With this interpretation, the parameter θ is generally partially identified:

θ ∈ ΘI ≡
{
mY+ −mY−

mT+ −mT−
: (mY ,mT ) ∈ F , (mY (Xi),mT (Xi)) = (E(Yi|Xi),E(Ti|Xi))

}
,

where the identified set ΘI is either (i) a closed interval [a1, a2] with a1 ≤ a2; (ii) the union
of two disjoint half-lines, (−∞, a1] ∪ [a2,∞) with a1 < 0 < a2; (iii) the entire real line; or,
as a knife-edge case (iv) a half-line [a1,∞) or (−∞,−a1], with a1 > 0.4 The classical point
identification result when the support of Xi contains an open neighborhood around the cutoff
is then simply a special case of (i) with ΘI a singleton. Our goal is to construct CSs for θ

that have correct uniform asymptotic coverage under both point and partially identification
(cf. Imbens and Manski, 2004), without applied researchers having to decide which of the
two notions of identification more accurately applies to their specific setting.

3. BIAS-AWARE ANDERSON-RUBIN-TYPE CONFIDENCE SETS
We argue in Section 5 that conventional CIs, based on local linear regressions (Fan and Gi-
jbels, 1996) and “delta method” (DM) arguments, can potentially break down in a number
of practically relevant setups, including ones with discrete running variables or weak iden-
tification. Our proposed approach is still based on local linear regression, but avoids these
issues through a construction similar to that of Anderson and Rubin (1949) for inference in
exactly identified linear IV models. It also takes possible bias from local linear smoothing

4This holds because the range of (mY+ −mY−,mT+ −mT−) over (mY ,mT ) ∈ F is a Cartesian product
of two intervals IY × IT . The four cases then obtain depending on which of these two intervals contain zero,
possibly as a boundary value.
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explicitly into account. We hence refer to our CSs as bias-aware AR CSs.
To describe the approach, we write τ̂W (h) for the local linear estimator of the jump τW in

the conditional expectation of some generic random variable Wi given the running variable
Xi at the cutoff:

τ̂W (h) = e⊤1 argmin
β∈R4

n∑
i=1

K(Xi/h)(Wi − β⊤(Zi, Xi, ZiXi, 1))
2 =

n∑
i=1

wi(h)Wi. (3.1)

Here K(·) is a kernel function, h > 0 is a bandwidth, e1 = (1, 0, 0, 0)⊤ is the first unit vector,
and the wi(h) are weights, given explicitly in Appendix A, that only depend on the data
through the realizations Xn = (X1, . . . , Xn)

⊤ of the running variable. We refer to estimators
of the form in (3.1) as SRD-type estimators of τW in the following.

The natural point estimator of θ is θ̂(h) = τ̂Y (h)/τ̂T (h), but we will base inference on
different statistics. Define the auxiliary parameters τM(c) = τY −cτT for c ∈ R, and note that
τM(c) = µM+(c)−µM−(c), with µM(x, c) = E(Mi(c)|Xi = x) and Mi(c) = Yi− cTi. We then
consider the SRD-type estimator τ̂M(h, c) =

∑n
i=1 wi(h)Mi(c), and exploit the properties of

the regression weights wi(h) to write its conditional bias bM(h, c) = E(τ̂M(h, c)|Xn)− τM(c)

and conditional variance s2M(h, c) = V(τ̂M(h, c)|Xn) given Xn as

bM(h, c) =
n∑

i=1

wi(h)µM(Xi, c)− (µM+(c)− µM−(c)), s2M(h, c) =
n∑

i=1

wi(h)
2σ2

M,i(c),

respectively, with σ2
M,i(c) = V(Mi(c)|Xi) the conditional variance of Mi(c) given Xi.5

The bias depends on (µY , µT ) through the transformation µM = µY − cµT only, and we
have that µM ∈ FH(BY + |c|BT ) by (2.3). As in Armstrong and Kolesár (2020), for any
value of the bandwidth h we can thus explicitly bound bM(h, c) in absolute value over F :

sup
(µY ,µT )∈F

|bM(h, c)| ≤ bM(h, c) ≡ −BY + |c|BT

2

n∑
i=1

wi(h)X
2
i sign(Xi).

The supremum is achieved by the “worst case” pair of piecewise quadratic conditional expec-
tation function with second derivatives equal to (BY sign(x),−BT sign(x)) over x ∈ [−h, h].6

5To keep the notation simple, the estimator τ̂M (h, c) = τ̂Y (h) − cτ̂T (h) uses the same bandwidth on
each side of the cutoff, and also the same bandwidth for estimating τY and τT . It is straightforward to
accommodate more general bandwidth choices; see Online Appendix B for details.

6Note that this bound may not be sharp if no such pair of piecewise quadratic functions is a feasible
candidate for (µY , µT ). For example, there is no function µT with µ′′

T (x) = BT sign(x) and µT (x) ∈ [0, 1] for
all x ∈ [−h, h] if h > (2/BT )

1/2. Still, the bias bound is valid in such cases.
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For every c ∈ R we can then construct an infeasible bias-aware CI for τM(c) as

Cα
M(h, c) = [τ̂M(h, c)± cv1−α(rM(h, c))sM(h, c)] ,

where rM(h, c) = bM(h, c)/sM(h, c) is the “worst case” bias to standard deviation ratio, and
cv1−α(r) is the (1 − α)-quantile of “folded” normal distribution |N(r, 1)|. Armstrong and
Kolesár (2018, 2020) show that such CIs are honest with respect to FH(BW ) irrespective
of the distribution of the running variable, have correct asymptotic coverage 1 − α at the
“worst case” conditional expectations, are valid for wide ranges of bandwidths, and are highly
efficient for SRD inference if the running variable is continuous.

The bandwidth that minimizes this CI’s asymptotic length is

hM(c) = argmin
h

cv1−α(rM(h, c))sM(h, c).

We assume that this optimal bandwidth is unique; and the minimization in its definition is
understood to be carried out over the set of bandwidths for which the involved objects are
well-defined. An efficient but infeasible bias-aware AR CS for θ is then given by the set of
all c ∈ R for which the auxiliary CI Cα

M(hM(c), c) contains the value zero:

Cα
∗ = {c : |τ̂M(hM(c), c)| ≤ cv1−α(rM(hM(c), c))sM(hM(c), c)} . (3.2)

Our proposed bias-aware AR CSs are feasible versions of (3.2) based on a standard error
ŝM(h, c) =

∑n
i=1 wi(h)

2σ̂2
M,i(c) and some estimate ĥM(c) of the optimal bandwidth:

Cα
ar =

{
c : |τ̂M(ĥM(c), c)| ≤ cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c))

}
, (3.3)

with r̂M(h, c) = bM(h, c)/ŝM(h, c). Both the standard error and bandwidth estimator can
be implemented in different ways, and our theoretical analysis below therefore only imposes
some weak “high level” conditions. We propose a specific standard error based on nearest-
neighbor linear regression estimates σ̂2

M,i(c) of σ2
M,i(c) in Section 6.1; and a feasible band-

width that combines a plug-in construction with a safeguard against certain small sample
distortions in Section 6.2.

4. THEORETICAL PROPERTIES
4.1. Coverage. Our main theoretical result is that Cα

ar is an honest CS for θ with respect to
F , in the sense of (2.1), under the following rather weak conditions.
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Assumption 1. (i) The data {(Yi, Ti, Xi), i = 1, . . . , n} are an i.i.d. sample; (ii) E((Yi −
E(Yi|Xi))

q|Xi = x) exists and is bounded uniformly over x ∈ supp(Xi) and (µY , µT ) ∈ F
for some q > 2; (iii) V(Yi|Xi = x) is bounded away from zero uniformly over x ∈ supp(Xi)

and (µY , µT ) ∈ F ; and Cov(Yi, Ti|Xi = x)2/(V(Yi|Xi = x)V(Ti|Xi = x)) is bounded away
from one uniformly over x ∈ supp(Xi) ∪ {x : V(Ti|Xi = x) > 0} and (µY , µT ) ∈ F ; (iv)
the kernel function K is a continuous, unimodal, symmetric density function that is equal to
zero outside some compact set, say [−1, 1].

Assumption 1 collects mostly standard conditions from the literature on local linear
regression. Part (i) could be weakened to allow for certain forms of dependent sampling,
such as cluster sampling. Parts (ii) and (iii) ensure that V(Mi(c)|Xi = x) is bounded away
from zero for all c ∈ R and allow for the special case of a SRD design. Part (iv) is satisfied
by most kernel functions commonly used in applied RD analysis, such as the triangular or
the Epanechnikov kernels.

Assumption 2. The following holds uniformly over (µY , µT ) ∈ F : (i) ĥM(c) = hM(c)(1 +

oP (1)); and (ii) ŝM(ĥM(c), c) = sM(hM(c), c)(1 + oP (1)).

Part (i) of Assumption 2 states that the empirical bandwidth is consistent for the in-
feasible optimal one, and part (ii) states that the empirical standard error is consistent
for the true standard deviation at the infeasible optimal bandwidth. We discuss specific
implementations in Sections 6.1 and 6.2.

Assumption LL1. The support of the running variable Xi is finite and symmetric, in the
sense that it is of the form {±x1, . . . ,±xk}, for positive constants (x1, . . . , xk) over some
open neighborhood of the cutoff.

Assumption LL2. The running variable Xi is continuously distributed with continuous
density fX that is bounded and bounded away from zero over an open neighborhood of the
cutoff.

Assumptions LL1–LL2 describe RD setups with discrete and continuously distributed
running variables, respectively. These settings are meant to be exemplary and are consid-
ered because they allow explicit characterization of the bandwidth hM(c). Note that the
symmetry of the support in Assumption LL1 is for notational convenience only. Discrete
running variables with asymmetric support can easily be accommodated by using a different
bandwidth on each side of the cutoff, as described in Online Appendix B. In Appendix A.1.1
we also consider an alternative asymptotic framework for the discrete case.
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In Lemma A.1 in the Appendix, we show that our assumptions have two main implica-
tions: (i) using an estimate of the optimal bandwidth instead of its population version has
a small impact, in some appropriate sense, on the quantities involved in the construction of
our CS; (ii) the magnitude of each weight wi(hM(c)) is small relative to the others’ in large
samples, in the sense that wratio(h) ≡ maxj=1,...,n wj(h)

2/
∑n

i=1 wi(h)
2 = oP (1), so that a CLT

applies to an appropriately standardized version of the estimator of τM(c). This yields the
following formal result.

Theorem 1. Suppose that Assumptions 1–2 and either LL1 or LL2 hold. Then Cα
ar is honest

with respect to F in the sense of (2.1).

4.2. Shape. Because our CS Cα
ar is defined through an inversion argument, it is interesting to

study its shape. A simple sufficient condition for Cα
ar to be non-empty is that the bandwidth

ĥM(c) is continuous in c, but beyond that it is difficult to make general statements. To see
why, recall that c ∈ Cα

ar if and only if

|τ̂M(ĥM(c), c)| ≤ cv1−α(r̂M(ĥM(c), c))ŝM(ĥM(c), c).

The above quantities depend on c directly, but also indirectly through ĥM(c). While the
former dependence is rather simple in structure, the latter introduces complicated nonlin-
earities that make it impossible to give a simple analytical result regarding the shape of our
CS. Such a result is possible, however, for a version that uses a fixed bandwidth.

Theorem 2. Let Cα
ar(h) be a version of Cα

ar that uses a bandwidth h that does not depend on
c. Then either Cα

ar(h) = [a1, a2], or Cα
ar(h) = (−∞, a1] ∪ [a2,∞), or Cα

ar(h) = (−∞,∞), or
Cα

ar(h) = [a1,∞) or Cα
ar(h) = (−∞, a1], for some constants a1 < a2.

The result mirrors the discussion at the end of Section 2. It suggests that our actual CS
should take one of these general shapes as long as ĥM(c) does not vary “too much” with c.
We found this to be the case in every simulation run and every empirical analysis that we
conducted in the context of this paper. The second case in Theorem 2, in which the CS is
not an interval, is a natural description of uncertainty in settings in which the data clearly
suggest that τY is non-zero, but cannot rule out the possibility that τT is not. The last
two cases in Theorem 2, in which Cα

ar(h) is a half-line, are also “knife-edge” cases: they only
occur if one of the boundaries of a bias-aware CI for τT is exactly equal to zero, and are thus
largely irrelevant for empirical practice.
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5. COMPARISON WITH DELTA METHOD INFERENCE
5.1. Method and Limitations. The CIs commonly reported in empirical FRD studies are
based on a linearization or “delta method” (DM) argument. It starts by noting that, after
centering, the FRD point estimator θ̂(h) = τ̂Y (h)/τ̂T (h) can be written as the sum of an
SRD-type estimator τ̂U(h) with unobserved dependent variable Ui, and a remainder ρ̂(h):

θ̂(h)− θ = τ̂U(h) + ρ̂(h), τ̂U(h) =
n∑

i=1

wi(h)Ui, Ui =
Yi − τY

τT
− τY (Ti − τT )

τ 2T
,

ρ̂(h) =
τ̂Y (h)(τ̂T (h)− τT )

2

2τ̂ ∗T (h)
3

− (τ̂Y (h)− τY )(τ̂T (h)− τT )

τ 2T
,

with τ̂ ∗T (h) an intermediate value between τT and τ̂T (h). One then imposes conditions under
which ρ̂(h) is asymptotically negligible relative to τ̂U(h), and forms a CI for θ by applying
some method for SRD inference to τ̂U(h), which differ mainly in how they handle potential
bias. Such DM CIs are proposed, for example, by Calonico et al. (2014) and Armstrong
and Kolesár (2020) in combination with robust bias correction and a bias-aware approach,
respectively.7 As Ui is unobserved, any such method must also be made feasible by using an
estimate Ûi in which τY and τT are replaced by suitable preliminary estimators.

Obvious downsides of such constructions include that they only control the bias of a
first-order approximation of θ̂(h), and not the bias of θ̂(h) itself; and that replacing Ui with
an estimate Ûi introduces additional uncertainty, which is asymptotically second-order and
hence generally unaccounted for in practice. In FRD designs such CIs are therefore generally
subject to additional finite-sample distortions, relative to SRD designs.

A more principal issue with DM CIs is that a central condition for their validity, namely
that ρ̂(h) is asymptotically negligible relative to τ̂U(h), is not innocuous. In particular, this
condition is not compatible with a discrete running variable, or more generally one with
support gaps around the cutoff. This is because τT and τY are generally only partially
identified in this case, and hence cannot be consistently estimated; see Section 2. The term
ρ̂(h) then generally has a non-zero probability limit, and cannot be ignored for the purpose
of inference on θ. This issue occurs irrespective of the method chosen to control the bias of
τ̂U(h), including bias-aware inference. Because running variables with discrete or irregular
support are ubiquitous in practice, this is an important limitation.

7In empirical papers, FRD estimates are sometimes obtained through the two-stage least squares regres-
sion Yi = θTi+β+XiZi+β−Xi(1−Zi)+εi with Zi as an instrument for Ti, using only data in some window
around the cutoff. This is numerically equivalent to a ratio of local linear regressions with a uniform kernel,
and the resulting CI is thus of the DM type (Hahn et al., 2001; Imbens and Lemieux, 2008).
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Another issue with DM CIs is that the conditions for their uniform validity rule out
weakly identified settings with τT close to zero. This problem occurs even if the running
variable is continuously distributed, and with any method chosen to control the bias of
τ̂U(h), including bias-aware inference. This is because for any DM CI to be honest with
respect to F , the term ρ̂(h) must be of smaller order than τ̂U(h) not only at the “true”
function pair (µY , µT ), but uniformly over all (µY , µT ) ∈ F . But since τT can be arbitrarily
close to zero over (µY , µT ) ∈ F , we have that sup(µY ,µT )∈F |ρ̂(h)| = ∞, which means that
DM CIs can be unreliable in such settings.8

5.2. An Equivalence Result. Armstrong and Kolesár (2020) study bias-aware DM CIs
under conditions for which such DM CIs are asymptotically valid. These include Assump-
tion LL2, which implies that is Xi continuously distributed, and that (µY , µT ) ∈ FH(BY )×
F δ

H(BT ) ≡ F δ for some δ > 0, which means that τT is well-separated from zero. They show
that bias-aware DM CIs are honest with respect to F δ in this case, and also near-optimal,
in the sense that no other method can substantially improve upon their length in large
samples. The next theorem shows that our bias-aware AR CSs are as efficient as their DM
counterparts in such settings for which DM CIs are specifically designed.

To avoid introducing additional high-level assumptions about the implementation details
of bias-aware DM CIs we consider an infeasible version Cα

∆, formally defined in (A.1), and
compare it to its infeasible counterpart Cα

∗ in our setup. Equal efficiency is established in
the sense that both CSs have the same local asymptotic coverage for a drifting parameter
within a O(n−2/5) neighborhood of θ. Such neighborhoods are appropriate to consider as the
length of Cα

∆ is OP (n
−2/5) uniformly over F δ.

Theorem 3. Suppose that Assumptions 1–2 and LL2 hold, and put θ(n) = θ + κn−2/5 for
some constant κ. Then

lim sup
n→∞

sup
(µY ,µT )∈Fδ

∣∣P (θ(n) ∈ Cα
∗
)
− P

(
θ(n) ∈ Cα

∆

)∣∣ = 0.

This result parallels the well-known finding that there is no loss of efficiency when using
the AR approach in exactly identified IV models relative to one based on a conventional
t-test (e.g. Andrews et al., 2019). It is not an obvious corollary, however, as there are, for

8Feir et al. (2016) also point out coverage issues of DM CIs under weak identification, but use different
types of arguments. Specifically, they show that DM CIs based on infeasible “undersmoothing” bandwidths
do not have correct asymptotic coverage under pointwise (with respect to the involved conditional expectation
functions) asymptotics if τT tends to zero at an appropriate rate related to that of the bandwidth. They
also show that undersmoothing AR CSs can have correct poinwise asymptotic coverage in this case.
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example, no analogues to the bandwidth and the smoothing bias in such IV models.

6. IMPLEMENTATION DETAILS AND EXTENSIONS
6.1. Standard Errors. Natural standard errors for τ̂M(h, c) are of the form ŝM(h, c) =

(
∑n

i=1 wi(h)
2σ̂2

M,i(c))
1/2, with σ̂2

M,i(c) some estimate of σ2
M,i(c). Setting σ̂2

M,i(c) to the squared
difference between the outcome of unit i and the average outcome among its nearest neighbors
in terms of the running variable (Abadie and Imbens, 2006; Abadie et al., 2014) is commonly
recommended in the RD literature (e.g. Calonico et al., 2014). However, this nearest-neighbor
standard error is actually not uniformly consistent over F because the leading bias of σ̂2

M,i(c)

is proportional to the first derivative of µM(·, c) at Xi, which is unbounded over F . We
therefore propose a novel procedure that replaces the local sample average with a local best
linear predictor. This modification makes the bias of σ̂2

M,i(c) proportional to the second
derivative of µM(·, c) at Xi, which is bounded in absolute value over F by BY + |c|BT .

We propose a version that explicitly allows for ties among the realizations of the running
variable. For R a small integer, denote the rank of |Xj −Xi| among the elements of the set
{|Xs −Xi| : s ∈ {1, . . . , n} \ {i}, XsXi > 0} by r(j, i), let Ri be the set of indices such that
r(j, i) ≤ Qi, where Qi is the smallest integer such that Ri contains at least R elements, and
let Ri be the resulting cardinality of Ri.9 The estimator σ̂2

M,i(c) is then defined as the scaled
squared difference between Mi(c) and its best linear predictor given its Ri nearest neighbors:

σ̂2
M,i(c) =

1

1 +Hi

(
Mi(c)− M̂i(c)

)2
, with

M̂i(c) = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1 ∑
j∈Ri

X̃⊤
j Mj(c), Hi = X̃i

(∑
j∈Ri

X̃⊤
j X̃j

)−1

X̃i

⊤
.

Here X̃i = (1, Xi)
⊤ if the running variable takes at least two distinct values among the

Ri nearest neighbors of unit i, and X̃i = 1 otherwise. The scaling term Hi ensures that
σ̂2
M,i(c) is approximately unbiased in large samples. The next result, which we prove in

Online Appendix A, shows that our new standard error is indeed uniformly consistent under
general conditions. We recommend its use not just for our CS, but more generally for bias-
aware inference methods that work with bounds on second derivatives.

Theorem 4. Suppose that Assumption 1, Assumption 2(i), and either Assumption LL1 or
Assumption LL2 are satisfied; that V(Yi|Xi = x), V(Ti|Xi = x) and Cov(Yi, Ti|Xi = x) are

9Note that if every realization of Xi is unique, then R = Qi = Ri, and Ri is the set of unit i’s R nearest
neighbors’ indices; but with ties in the data Ri could be greater than R. We use R = 5 in our simulations
and the empirical application.
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Lipschitz continuous on each side of the cutoff uniformly over x ∈ supp(Xi) and (µY , µT ) ∈
F ; and that E((Yi − E(Yi|Xi))

4|Xi = x) is uniformly bounded over x ∈ R and (µY , µT ) ∈ F .
Then Assumption 2(ii) holds for the standard error described in this subsection.

6.2. Bandwidth Choice. An obvious candidate for a feasible bandwidth is the empirical
analogue of hM(c), which minimizes the length of the auxiliary CI in Section 4:

ĥ∗
M(c) = argmin

h
cv1−α(r̂M(h, c))ŝM(h, c).

While this choice is generally attractive, it could lead to coverage distortions if BY + |c|BT

is very large relative to sampling uncertainty. To see why, recall from the discussion at the
end of Section 4.1 that τ̂M(h, c) =

∑n
i=1 wi(h)Mi(c) is asymptotically normal if wratio(h) ≡

maxj=1,...,n wj(h)
2/
∑n

i=1 wi(h)
2 = oP (1). Normality should thus be a “good” finite-sample

approximation if wratio(h) is “close” to zero (this reasoning also follows from a Berry-Esseen-
type result). However, if BY + |c|BT (and thus the worst-case bias) is large, then ĥ∗

M(c) is
typically small. The weights wi(ĥ

∗
M(c)) then concentrate on few observations close to the

cutoff, wratio(ĥ
∗
M(c)) is large, and CLT approximations can be inaccurate as τ̂M(ĥ∗

M(c), c)

then effectively behaves like a sample average of a small number of observations.
To address this issue, we propose imposing a lower bound on the bandwidth, chosen such

that the value of wratio(h) remains below some reasonable threshold constant η > 0, which
we set to η = .075 in our simulations and empirical application.10

ĥM(c) = max
{
ĥ∗
M(c), hmin(η)

}
, hmin(η) = min {h : wratio(h) < η} .

Under standard conditions like Assumption LL1 or LL2 the lower bound on the band-
width clearly never binds asymptotically, but imposing it can improve the finite-sample
coverage of our CSs: as ĥM(c) ≥ ĥ∗

M(c), our construction trades off a possible increase in
finite-sample bias against normality being a better finite-sample approximation. This im-
proves coverage because our CSs explicitly account for the exact bias, but cannot capture
deviations from normality. This idea can also be used for SRD inference, and more generally
in all settings where finite-sample accuracy of inference faces a similar “bias vs. normality”
trade-off. For example, Armstrong and Kolesár (2021) use our approach in the context of
inference on average treatment effects under unconfoundedness with limited overlap.

10To motivate this choice, suppose that Xn = {±.02,±.04, . . . ,±1}, that K(t) = (1− |t|)1{|t| < 1} is the
triangular kernel, and that h = 1. Then τ̂M (h, c) is a weighted least squares estimator that gives positive
weight to 50 observations on each side of cutoff, and wratio(h) ≈ .075.
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6.3. Choosing Smoothness Bounds. In order to compute Cα
ar, researchers needs to choose

the smoothness bounds BY and BT . Such bounds cannot be estimated consistently without
imposing strong additional assumptions; and without choosing such bounds it is generally not
possible to conduct inference on θ that is both valid and informative, even in large samples
(Low, 1997; Armstrong and Kolesár, 2018; Bertanha and Moreira, 2018). Methods that seem
to such choices still require restrictions on smoothness implicitly to attain approximately
correct CI coverage in practice (Armstrong and Kolesár, 2020).11 Explicitly specifying BY

and BT makes it transparent on which assumptions the inferential statements are based.
Roughly speaking, “small” values of BY and BT amount to the assumption that the

respective functions are “close” to linear on either side of the cutoff, whereas larger values
allow the functions to be increasingly “curved”. The choice should be guided by subject
knowledge but is arguably difficult in empirical practice, where there will be no single objec-
tively correct value. In line with the previous literature, we hence recommend considering
a range of plausible values as a form of sensitivity analysis. We also recommend estimating
lowers bound B̂Y,low and B̂T,low, and to compute one-sided CIs for BY and BT , respectively,
via the methods proposed in Armstrong and Kolesár (2018) and Kolesár and Rothe (2018),
to guard against overly optimistic choices.

Two heuristic “rules of thumb” (ROT) for determining plausible values in practice have
also been considered in the literature. Both are based on fitting global polynomial specifica-
tions µ̃Y,k and µ̃T,k of order k on either side of the cutoff by conventional least squares. Arm-
strong and Kolesár (2020) use fourth-order polynomials, and propose the ROT B̂Y,ROT1 =

supx∈X |µ̃′′
Y,4(x)| and B̂T,ROT1 = supx∈X |µ̃′′

T,4(x)|, where X denotes the support of the run-
ning variable. Imbens and Wager (2019) consider a ROT in which the maximal curva-
ture implied by a quadratic fit is multiplied by some moderate factor, say 2, yielding
B̂Y,ROT2 = 2 supx∈X |µ̃′′

Y,2(x)| and B̂T,ROT2 = 2 supx∈X |µ̃′′
T,2(x)|.

Such rules of thumb can provide useful first guidance, but should be complemented with
other approaches in a sensitivity analysis. We strongly recommend to always check the fit of
the respective polynomial specification, and to dismiss the ROT value if the fit is obviously
poor. In Online Appendix C, we argue that in “roughly quadratic” settings the fourth-order
polynomial specification that underlies ROT1 tends to produce quite erratic over-fits of the

11For example, an undersmoothing SRD CI can only be expected to have approximately correct coverage
if the bias of the local linear estimator is “small” relative to its standard error. This can only be expected
if the underlying function is “close” to linear, which is equivalent to its maximum second derivative being
“close” to zero. A researcher that considers an undersmoothing SRD CI to be reliable has thus implicitly
imposed a smoothness bound. An analogous argument applies to robust bias correction (Kamat, 2018).
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data that can lead to vast over-estimates of the true smoothness bounds, and corresponding
CSs with poor statistical power. ROT2, on the other hand, tends to produce more reasonable
values in many such setups. This pattern is also visible in our simulations.

6.4. Regression Kink Designs. In Online Appendix D, we present an extension of our
approach to CSs for the ratio θ(v) ≡ τ

(v)
Y /τ

(v)
T ≡ (µ

(v)
Y+ − µ

(v)
Y−)/(µ

(v)
T+ − µ

(v)
T−) of the jumps in

the vth-order derivatives of two generic conditional expectation functions (µY , µT ) at some
threshold value. This setup covers the important Fuzzy Regression Kink Design (Card et al.,
2015), where the parameter of interest is the ratio θ(1) of two jumps in first derivatives.

We again form bias-aware CIs for an auxiliary parameter τ (v)M (c) = τ
(v)
M −cτ

(v)
T , now based

on pth-order local polynomial regression (where p ≥ v and typically p = v+1), and collect all
values of c for which such CIs contain zero to create an AR CS for θ(v). The construction is
largely analogous to that described in Section 3, with the main difference concerning the bias
bound. Specifically, we derive the apparently novel result that if µY and µT are both (p+1)

times continuously differentiable on either side of the threshold, with derivatives of order
(p+ 1) uniformly bounded by BY and BT , respectively, and τ̂

(v)
M,p(h, c) =

∑n
i=1 wvp,i(h)Mi(c)

is the local pth order polynomial estimator of τ (v)M (c) with bandwidth h, the conditional bias
E(τ̂ (v)M,p(h, c)|Xn)− τ

(v)
M,p(c) is absolutely bounded by

bM,vp(h, c) ≡ (−1)p−vBY + |c|BT

(p+ 1)!

n∑
i=1

wvp,i(h)X
p+1
i sign(Xi)

v+1,

uniformly over the (µY , µT ); see Online Appendix D for details.

7. NUMERICAL ILLUSTRATIONS
7.1. Empirical Application. In this subsection, we illustrate our methods revisiting data
from Battistin et al. (2009), who study the effects of retirement on consumption in Italy.
The data are a sample of n = 30, 006 individuals, obtained by combining several waves of
the Bank of Italy Survey on Household Income and Wealth (SHIW) for the period 1993-2004.
We take the natural logarithm of total household spending as the outcome, retirement as
the treatment, and years of age from the formal retirement eligibility threshold, which is
normalized to zero, as the running variable. The running variable is thus discrete, but still
has somewhat rich support. Figure 1 shows the average of log consumption and the empirical
proportion of retired individuals in the data as a function of the running variable.

We then compute our bias-aware AR CSs with both rules of thumb ROT1 and ROT2
to choose the smoothness bounds. The resulting CSs turn out to be intervals. We compare
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Figure 1: Average log consumption (top panel) and empirical proportion of retired individuals by
years of age to/from the retirement eligibility threshold. Dashed vertical lines indicate indicates
the cutoff, which is normalized to zero. Size of dots is proportional to the respective number of
individuals in the data.
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Table 1: Confidence sets for the effect of retiring on log consumption for various methods
Smoothness Bound Method Confidence Set

ROT1 (BY = 0.004, BT = 0.008) Bias-aware AR CS −0.268± 0.356
Bias-aware DM CS −0.216± 0.304

ROT2 (BY = 0.002, BT = 0.002) Bias-aware AR CS −0.150± 0.260
Bias-aware DM CS −0.136± 0.234

Robust bias correction DM CI −0.269± 0.305
– Global Linear with DM CI −0.252± 0.065

Global Polynomial with DM CI −0.376± 0.042

Notes: 30,006 data points, CSs with 95% nominal coverage.

them to bias-aware DM CIs that use the same smoothness bounds, to robust bias correction
DM CIs, to DM CIs based on global linear regression with separate intercepts and slopes on
each side of the cutoff, and to DM CIs based on a global 4th order polynomial regression with
a dummy for retirement eligibility.12 We report the results in Table 1 in the form “midpoint
± half-length” to make comparing differences in the CIs’ location and length easier.

We see that bias-aware AR CSs can differ meaningfully from their bias-aware DM CI
counterparts in terms of both length and location, even if the same smoothness bounds
are used. Our preferred rule ROT2 produces markedly smaller smoothness bounds than
ROT1, which is reflected in the shorter CSs. Robust bias correction yields DM CIs that are
qualitatively closer to those obtained under ROT1 by bias-aware methods. The two global
parametric methods are the only ones that yield CIs that do not cover zero, but of course
this does not account for the model misspecification bias apparent from Figure 1.

7.2. Simulations. In this subsection, we compare the practical performance of our bias-
aware AR CS to that of alternative procedures through simulations. We consider a number
of data generating processes calibrated to the data from Battistin et al. (2009) with varying
curvature of the conditional expectation functions, richness of the running variables support,
and strength of identification.

Data Generating Processes. We first create three versions of each of the two CEFs of outcomes
and treatment, shown in Figure 2. Specifically, for Wi equal to either Ti or Yi, we create the
sth CEF version µW,s(x) by fitting a second order spline with four knots on each side of the

12In Online Appendix F, we also report results for variants of these CSs that use the optimized RD
estimator of Imbens and Wager (2019) instead of local linear regression.
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cutoff, that is,

µW,s(x) = 1{x ≥ 0}

(
β0,W+ + β1,W+x+

4∑
j=1

βj+1,W+bx− vjc2
)

+ 1{x < 0}

(
β0,W− + β1,W−x+

4∑
j=1

βj+1,W−bx− vjc2
)

via least squares to the data from Battistin et al. (2009), with b·c = max(0, ·). Here our
first version uses the knot points vj ∈ {0, 10, 20, 30}; the second version uses the knot points
vj ∈ {0, 5, 15, 30}, creating greater curvature near the cutoff; while the third version also
uses the knot points vj ∈ {0, 5, 15, 30} and additionally fixes the intercept parameters β0,W+

and β0,W− to generate very high curvature near the cutoff.13 We refer to these settings as
having either low, moderate or high CEF curvature. Note that the magnitude of the jump in
the conditional treatment probability, and hence the strength of identification, also decreases
across versions. We then consider all combinations of these CEFs, but for brevity only report
results for the two combinations (µT,1, µY,1) and (µT,2, µY,2). See Online Appendix E for the
remaining results.

For each combination of CEFs, we also consider four different distributions for the running
variable Xi: the “mildly discrete” empirical distribution of the data from Battistin et al.
(2009); a continuous distribution obtained by adding uniformly distributed U(0, 1) noise to a
draw from the empirical distribution; and two more “coarsely discrete” distributions obtained
by rounding draws from the empirical distribution to the integers {±1,±(1 + d),±(1 +

2d), . . . } for d ∈ {3, 6}. Finally, for any draw of Xi we draw treatment status Ti from a
Bernoulli distribution with mean µT,j(Xi) and outcome Yi from a normal distribution with
mean µT,k(Xi) and variance σ2(Xi), for (j, k) ∈ {1, 2, 3} × {1, 2, 3} and σ2(x) the sampling
variance of Yi among units with running variable equal to the original draw of the running
variable from the empirical distribution in the data.

Methods. We study the performance of eight different implementations of AR CSs in our
simulations: (i) our bias-aware CS, using the respective true smoothness bounds BY and BT ;
(ii) our bias-aware CS, using twice the true BY and BT ; (iii) our bias-aware CS, using half
the true BY and BT ; (iv) our bias-aware CS, using ROT1 estimates of BY and BT ; (v) our
bias-aware CS, using ROT2 estimates of BY and BT ; (vi) a naive CS that ignores bias, using

13For the conditional treatment probability, our least squares fits also impose the constraint that the
function is increasing, and that it is equal to zero and one below and above the lowest and highest support
point, respectively. Note that the setting with very high curvature setting might be unrealistic in practice.
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Figure 2: CEFs of outcome (left panel) and of the treatment (right panel) CEFs used in the
simulations. Dashed vertical lines indicate indicates the cutoff, which is normalized to zero. Data
from Figure 1 (grey dots) shown for reference.

an estimate of the “pointwise-MSE optimal” bandwidth (Imbens and Kalyanaraman, 2012,
henceforth IK); (vii) an undersmoothing CS, using n−1/20 times the estimated IK bandwidth;
and (viii) a robust bias correction CS, using local quadratic regression to estimate the bias,
and estimated IK bandwidths. In addition, we also consider the performance of eight different
DM CIs using the just-mentioned approaches to handling bias.14

Results. Table 2 shows the simulated coverage rates of the various CSs under the sixteen
different DGPs we consider in our simulations (four combinations of CEFs times four running
variable distributions). We first discuss results for AR CSs, shown in the left panel. With
the true smoothness bounds, the coverage rates of our bias-aware CSs are close to and mostly

14Computations are carried out with the statistical software R. All bias-aware CSs are computed using
our own software, which builds on the package RDHonest. All other CSs are computed using functions from
the package rdrobust. A triangular kernel is used in all cases. We note that the IK bandwidth estimates
computed by rdrobust are sometimes too small for the respective CSs to be well-defined if the running
variable is discrete. In those cases, we manually set the main bandwidth such that positive weights are given
to three support points on each side of the cutoff (for the bias correction bandwidth we use four support
points). In Online Appendix F, we also report results for variants of our CSs in which local linear regression
is replaced with the optimized RD estimator of Imbens and Wager (2019).
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slightly above the nominal level, irrespective of running variable distribution, curvature of
the unknown functions, and identification strength. The slight overcoverage occurs because
the function µY (x)−θµT (x) is not exactly quadratic in either setting, and thus the bias does
not achieve its worst-case value. Using twice the true bounds increases simulated coverage
as expected, while half the true value can result in meaningful undercoverage.

Using one of the ROTs for the smoothness bounds leads to potentially severe distortions
in some settings, which highlights the need to investigate the fit of the respective underlying
global polynomial approximation in practice (cf. Online Appendix C). Combining a naive
approach, undersmoothing, or robust bias correction with an AR construction leads to CSs
with undercoverage that is modest in some DGPs we consider, but can be substantial espe-
cially for those with more coarse running variable support, stronger curvature of the CEFs,
and weak identification (cf. Online Appendix F).

Turning to results for DM CIs in the right panel of Table 2, we see that combining a
bias-aware approach with this construction does not lead to CIs with correct coverage in all
settings even when using the true smoothness bound. This is because bias-aware DM CIs
only control the bias of a first-order approximation of the estimator on which they are based.
Coverage distortions are particularly severe in settings of strong curvature, and they further
amplify in settings with weak identification. Using the ROT choices for the smoothness
bounds leads to further distortions in some cases. The coverage of DM CIs that use the
naive approach, undersmoothing, or robust bias correction is distorted in most settings,
and the distortions generally become more severe with a more coarse support, in settings
with a higher curvature and it further amplifies in settings of weak identification (cf. Online
Appendix F).

To show that our bias-aware AR CSs not only have good coverage properties but also
yield comparatively powerful inference, we simulate the rates at which the various CSs we
consider cover parameter values other than the true one. We report the results for one
exemplary setting (low curvature of outcome and treatment CEF, continuously distributed
running variable) in Figure 3.15 To avoid having all 16 coverage curves in one plot, we split
the results into four panels: the five bias-aware AR CSs in (a), the three other AR CSs in
(b), the five bias-aware DM CIs in (c), and the three other DM CIs in (d). Panels (b)–(d)
also show the curve for our bias-aware AR CS with the true constants to have a common
point of reference.

15We focus on this setting because the coverage of the true parameter is reasonably close to the nominal
level for all procedures, and thus a comparison of coverage rates at “non-true" parameter values is meaningful
across CSs. Analogous plots for other DGPs are available from the authors.
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Table 2: Simulated CS coverage (%)
Anderson-Rubin Delta Method

Bias-Aware Bias-Aware
Support TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC TC TC×.5 TC×2 ROT1 ROT2 Naive US RBC

Setting 1 - Low outcome CEF curvature, low treatment CEF curvature
Baseline 96.7 91.0 98.4 97.9 92.4 88.7 93.7 94.6 97.9 93.7 99.3 98.9 93.9 94.2 96.0 94.2

Continuous 96.6 92.7 97.4 97.1 94.3 89.6 94.0 94.7 97.2 94.4 98.0 97.8 95.1 94.7 95.4 94.7
{±1,±4, . . . } 95.9 92.6 98.4 97.8 94.4 88.1 93.8 94.6 96.7 93.8 99.3 98.7 95.0 94.0 89.3 94.6
{±1,±7, . . . } 97.8 91.6 100.0 99.6 95.5 78.0 84.8 93.2 98.6 92.3 100.0 99.8 96.0 85.1 77.5 93.1

Setting 2 - Moderate outcome CEF curvature, moderate treatment CEF curvature
Baseline 97.2 88.7 99.2 91.9 36.4 47.6 80.9 58.6 91.1 74.0 98.3 81.9 24.7 73.3 93.0 72.9

Continuous 96.4 92.2 97.3 94.3 59.8 68.6 87.6 78.2 93.7 84.7 96.5 89.3 46.6 84.9 94.5 86.3
{±1,±4, . . . } 98.3 88.8 100 92.1 63.5 27.5 71.1 45.6 92.7 81.8 99.0 86.0 46.6 70.7 65.9 71.3
{±1,±7, . . . } 100 79.9 100 92.1 26.2 1.3 6.5 0.3 95.4 56.0 100 78.2 19.8 6.0 5.5 4.7

Notes: Results based on 50,000 Monte Carlo draws for a nominal confidence level of 95%. Columns show results for bias aware approach with true
constants (TC), two times true constants (TC×2), half true constants (TC×.5), and with rule of thumb estimates (ROT1) and (ROT2); naive approach
that ignores bias (Naive); undersmoothing (US); and robust bias correction (RBC).
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(c) Bias-Aware Delta Method CI
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(d) Other Delta Method CIs
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Figure 3: Simulated coverage rates of various values of parameter values and for different types of confidence sets. Based on
the Setting 1 and a continuous running variable as described in the main text. Bias aware approach with true constants (TC
(ref); as reference function in all graphs), two times true constants (TC×2), 0.5 times true constants (TC×.5), and with rule of
thumb smoothness bounds (ROT1) and (ROT2); robust bias correction (RBC); naive approach that ignores bias (Naive); and
undersmoothing (US).
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Panel (a) then shows that the coverage rate of bias-aware AR CSs drops very quickly
to zero away from the true parameter. Panels (b)–(d) show that the coverage of bias-aware
AR CSs away from the true parameter is also below that of most competing procedures
over almost all the parameter space, with the exception of those which exhibit a meaningful
distortion at the true parameter value and are therefore not suitable for a direct comparison.
This confirms that the accurate coverage of our CSs in settings with discrete running variables
and weak identification does not come at the expense of statistical power in a canonical setup,
for which most competing CSs are specifically constructed.

A. PROOFS OF THEOREMS 1–3
In this Appendix, we prove Theorems 1–3. See Online Appendix A for a proof of Theorem 4.
We note that, by basic least squares algebra, the statistic τ̂M(h, c) can be written as

τ̂M(h, c) =
n∑

i=1

wi(h)Mi(c), wi(h) = wi,+(h)− wi,−(h),

wi,+(h) = e⊤1 Q
−1
+ X̃iK(Xi/h)1{Xi ≥ 0}, Q+ =

n∑
i=1

K(Xi/h)X̃iX̃
⊤
i 1{Xi ≥ 0}

wi,−(h) = e⊤1 Q
−1
− X̃iK(Xi/h)1{Xi < 0}, Q− =

n∑
i=1

K(Xi/h)X̃iX̃
⊤
i 1{Xi < 0},

where X̃i = (1, Xi)
⊤. We write An(µ) = oP,F(1) if supµ∈F P (|An(µ)| > ϵ) = o(1) for all ϵ > 0

and a generic sequence An(µ) of random variables indexed by µ ∈ F . We also drop the
dependency on c from the notation for the optimal bandwidth in most instances, and thus
write hM instead of hM(c).

A.1. Proof of Theorem 1. We begin by establishing the following lemma.

Lemma A.1. Suppose that Assumption 1–2 and either Assumption LL1 or Assumption LL2
are satisfied. Then the following holds uniformly over (µY , µT ) ∈ F : (i) wratio(hM(c)) =

oP (1); (ii) (τ̂M(ĥM(c), c) − τ̂M(hM(c), c))/sM(hM(c), c) = oP (1); and (iii) (b̄M(ĥM(c), c) −
b̄M(hM(c), c))/sM(hM(c), c) = oP (1).

Proof. First suppose that Assumption LL1 is satisfied, and note that it is clear with a
discrete running variable that the optimal bandwidth hM shrinks with the sample size, but
that it cannot tend to zero as it has to be greater than the support point second closest
to the cutoff in order for the local linear regression estimator to be well-defined. To show
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part (i), note that wratio(hM) is well-defined with probability approaching 1, and that

wratio(hM) ≤ max
i∈{1,...,n}

wi(hM)2∑
j:Xj=Xi

wj(hM)2
= max

i∈{1,...,n}

1∑
j:Xj=Xi

1{Xi = Xj}
= op(1)

as the number of units whose realization of the running variable is equal to any particular
value in its support tends to infinity. To show parts (ii) and (iii), recall that hM approaches
some value between second and third support point closest to the cutoff, and that indeed
any bandwidth h between the second and third support point closest to the cutoff implies
the same local linear regression weights wi(h) for all i. Part (ii)–(iii) then follow trivially, as
each expression under consideration depends on h only through wi(h).

Now suppose that Assumption LL2 holds. Note that the minimizer of the function
h 7→ cv1−α(rM(h, c))sM(h, c) must balance the asymptotic bias and standard deviation of
the the local linear regression estimator, and thus hM ∝ n−1/5(1 + o(1)). Statement (i) then
follows from classical arguments for this bandwidth. On the other hand, statements (ii)–(iii)
of Lemma A.1 follow by applying the arguments starting in the second paragraph of the proof
of Theorem E.1 in Armstrong and Kolesár (2020) conditional on Xn, and the assumption
that the running variable density is continuous around the cutoff.

We now proceed with the proof of the core statement of Theorem 1. As θ ∈ Cα
ar if and

only if τM(θ) ∈ Cα(θ), it suffices to show that for any c ∈ R

lim inf
n→∞

inf
(µY ,µT )∈F

P(τM(c) ∈ Cα(c)) ≥ 1− α.

Note that it follows from Lemma A.1 (ii)–(iii) and uniform continuity of cv1−α(·) that

|τ̂M(ĥM , c)− τM(c)|
ŝM(ĥM , c)

− cv1−α(r̂M(ĥM , c))

=

∣∣∣∣ τ̂M(hM , c)− E [τ̂M(hM , c)|Xn]

sM(hM , c)
+

bM(hM , c)

sM(hM , c)

∣∣∣∣− cv1−α(rM(hM , c)) + oP,F(1).

By Lemma A.1 (i) and Lyapunov’s CLT (τ̂M(hM , c)−E [τ̂M(hM , c)|Xn])/sM(hM , c) converges
in distribution to a standard normally distributed random variable, uniformly over (µY , µT ) ∈
F . It then follows again from uniform continuity of cv1−α(·) that

P(τM(c) ∈ Cα(c)) = P
(∣∣∣∣S +

bM(hM , c)

sM(hM , c)

∣∣∣∣ ≤ cv1−α(rM(hM , c))

)
+ oP,F(1),

with S a generic standard normal random variable. Honesty now follows from the definition
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of the critical value function cv1−α(·) if

sup
(µY ,µT )∈F

|bM(hM , c)/sM(hM , c)| ≤ rM(hM , c).

Armstrong and Kolesár (2020, Theorem B.3) implies that the last statement would hold with
equality if µY and µT had unbounded domain. We obtain a weak inequality because in our
setup µT is naturally constrained to take values in [0, 1], and the supremum is thus taken
over a smaller set of functions. This completes our proof.

A.1.1. Alternative assumptions for discrete case. The above asymptotic framework for the
case of a discrete running variable implies that in large samples the optimal bandwidth
hM is the corner solution of the corresponding optimization problem, and is thus such that
only the two closest support points on each side of the cutoff receive positive kernel weights.
This in turn implies that the corresponding bias asymptotically dominates the corresponding
standard deviation. Here we show that our CSs also remain honest, in the sense of (2.1),
under an alternative asymptotic sequence under which the variance of Mi(c) increases with
the sample size at an appropriate rate. This rate is chosen such that bias and standard error
are of the same stochastic order in large samples under the resulting optimal bandwidth.

Proposition 1. Suppose that for each n, the data {(Yi, Ti, Xi, ), i = 1, . . . , n} are i.i.d.,
distributed according to a law Pn. Under each Pn, the support of Xi consists of the J = J++J−

fixed points x1 < . . . < xJ− < 0 ≤ xJ−+1 < . . . < xJ ; and the conditional expectation
functions (µY , µT ) do not vary with n as well. Moreover, V(Mi(c)|X = xj) = nσ̄2

M,j(c) for
constants σ̄2

M,j(c) > 0 for every c ∈ R, j = 1, . . . , J , and (µY , µT ) ∈ F ; and E((Mi(c) −
E(Mi(c)|Xi))

q|Xi = xj) = O(nq/2) for some q > 2. Also, the kernel K is a continuous,
unimodal, symmetric density function that is equal to zero outside some compact set, say
[−1, 1]. Then Cα

ar is honest with respect to F in the sense of (2.1).

Proof. We show that the statements (i)–(iii) of Lemma A.1 also hold under the conditions
of the Proposition. Honesty of our CS then follows as in the proof of Theorem 1 by noting
that Lyapunov’s CLT still applies under the conditions of the Proposition.

First note that for any fixed bandwidth h > max{|xJ−−1|, xJ−+2}, we have that both
b̄M(h, c) and sM(h, c) converge with rate n−1/2 to strictly positive constants in probability,
and thus hM = h̄M + oP (1), with h̄M > max{|xJ−−1|, xJ−+2}. Statement (i) then follows
from the same reasoning as in the proof of Lemma A.1(i). To show statement (ii), note
that because sM(hM , c) = OP (1), it suffices to show that τ̂M(ĥM , c) − τ̂M(hM , c) converges
to zero in probability. With a discrete running variable, we can write the estimator τ̂M(h, c)
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as follows:

τ̂M(h, c) =
J∑

j=1

w(j)(h)M̄j(c), M̄j(c) =
1

np̂j

∑
i:Xi=xj

Mi(c), w(j)(h) = w(j)+(h)− w(j)−(h),

w(j)+(h) = e⊤1 Q̃
−1
+ p̂jK(xj/h)x̃j1{xj ≥ 0}, Q̃+ =

J∑
j=1

p̂jK(xj/h)x̃jx̃
⊤
j 1{xj ≥ 0}

w(j)−(h) = e⊤1 Q̃
−1
− p̂jK(xj/h)x̃j1{xj < 0}, Q̃− =

J∑
j=1

p̂jK(xj/h)x̃jx̃
⊤
j 1{xj < 0},

with x̃j = (1, xj)
⊤ and p̂j =

∑n
i=1 1{Xi = xj}/n the relative frequency of the jth support

point in the data. We then have

τ̂M(ĥM , c)− τ̂M(hM , c) =
J∑

j=1

(w(j)(ĥM)− w(j)(hM))µM(xj, c)

+
J∑

j=1

(w(j)(ĥM)− w(j)(hM))(M̄j(c)− µM(xj, c)).

From continuity of the kernel function, it follows that the mapping h 7→ w(j)(h) is continuous
for all j = 1, . . . , J , and hence w(j)(ĥM)−w(j)(hM) = oP (1) for all j = 1, . . . , J . The first term
on the right-hand side of the previous equation then converges to zero in probability follows
because µM(·, c) has uniformly bounded second derivatives, and from the algebraic properties
of the local linear regression weights. For the second term, convergence in probability to
zero follows because M̄j(c)− µM(xj, c) = OP (1). Taken together, this proves statement (ii).
Statement (iii) can then be shown analogously.

A.2. Proof of Theorem 2. To simplify the exposition, we emphasize the dependence of
various estimators on c in our notation, but suppress their dependency on the bandwidth h

(which does not depend on c under the conditions of this theorem). The CS Cα
ar(h) is given

by the set of all values of c satisfying

ϑ(c) ≤ 0, where ϑ(c) ≡ |τ̂Y − cτ̂T | − cv1−α(r̂M(c))ŝM(c).

The function ϑ(c) is continuous because cv1−α is uniformly continuous, and both the standard
error ŝM(c) = (ŝ2Y − 2cŝTY + c2ŝ2T )

1/2 and the worst case bias bM(h, c) = −(BY + |c|BT )/2 ·∑n
i=1 wi(h)X

2
i sign(Xi) are continuous in c. The term cv1−α(r̂M(c))ŝM(c) is also strictly

convex in c, because both the standard error and the worst-case bias are convex in c and
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cv1−α(·) is strictly convex and increasing. The shape of Cα
ar(h) is then determined by the

roots of ϑ(c). To prove the theorem, it suffices to show that the function ϑ(c) always fits
into one of the following four categories: (i) ϑ(c) ≤ 0 for all c; (ii) ϑ(c) has two roots, and
there exists c∗ > 0 such that ϑ(c) < 0 for all |c| > c∗; (iii) ϑ(c) has two roots, and there
exists c∗ > 0 such that ϑ(c) > 0 for all |c| > c∗, and (iv) ϑ(c) has one root. Then Cα

ar(h) = R
in case (i), Cα

ar(h) = (−∞, a1]∪ [a2,∞) for some a1 < a2 in case (ii); and by Cα
ar(h) = [a1, a2]

for some a1 < a2 in case (iii), and Cα
ar(h) = (−∞, a2] or Cα

ar(h) = [a1,∞) in case (iv). We
now go through a number of case distinctions.

If τ̂T = 0, then |τ̂Y − cτ̂T | is a constant function in c. As cv1−α(r̂M(c))ŝM(c) is strictly
convex in c and unbounded, ϑ(c) must be either of form (i) or (ii). We threfore suppose that
τ̂T 6= 0 from now on, and write θ̂ = τ̂Y /τ̂T . As ϑ(θ̂) < 0 by construction, the function ϑ(c)

cannot be strictly positive. As |τ̂Y −cτ̂T | is a piecewise linear function and cv1−α(r̂M(c))ŝM(c)

is strictly convex, the function ϑ(c) can also have at most two roots for c ≤ θ̂, and at most
two roots for c > θ̂. If it does not have any root, ϑ(c) is of the form (i).

Let us first assume that limc→±∞ ϑ(c) 6= 0. It follows from basic algebra that there
exists some c∗ sufficiently large such that sign(ϑ(c)) = sign(ϑ(−c)) = 1 or sign(ϑ(c)) =

sign(ϑ(−c)) = −1 and ϑ(c) 6= 0 for all c > c∗. The function ϑ(c) therefore cannot have one
or three roots; so it must have either four roots or two roots or none. If sign(ϑ(c)) = −1 for all
|c| > c∗, which means that |τ̂Y − cτ̂T | > cv1−α(r̂M(c))ŝM(c). The function cv1−α(r̂M(c))ŝM(c)

intersects once with the function |τ̂Y − cτ̂T | for c < θ̂, and once for c > θ̂. Therefore ϑ(c)

must be of form (iii) in this case. If sign(ϑ(c)) = −1 for all |c| > c∗, the above reasoning only
yields that ϑ(c) has at most four roots. However, note that for |c| → ∞ the absolute value
of the first derivative of cv1−α(r̂M(c))ŝM(c) with respect to c converges to some constant ϖ,
and that for any value of ς ∈ R the expression sign(c)·(cv1−α(r̂M(c))ŝM−|ς+ϖ ·c|) converges
to a constant. Choose ς such that the latter constant is zero, and set ϱ(c) = |ς + ϖc|. By
construction, ϱ(c) intersects with |τ̂Y − cτ̂T | twice either for c ≤ θ̂ or c ≥ θ̂. It also holds that
ϱ(c) ≤ cv1−α(r̂(c))ŝM(c) for all c by strict convexity of cv1−α(r̂(c))ŝM(c). This reasoning
implies that ϑ(c) can have at most two roots, and must be of form (ii) in this case.

Now suppose that limc→±∞ ϑ(c) = 0, which only occurs if τ̂T = ±cv1−α(r̂T (c)) · ŝT (c). It
then follows from strict convexity of cv1−α(r̂M(c))ŝM(c) that ϑ(c) cannot have three roots.
ϑ(c) is therefore of form (i) if it does not have any root, and otherwise of form (iv). This
completes the proof.

A.3. Proof of Theorem 3. We begin by giving a formal description of a bias-aware DM
CI. Recall the definition of Ui from Section 5, and let bU(h) = E(τ̂U(h)|Xn) and sU(h) =
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V(τ̂U(h)|Xn)
1/2 denote conditional bias and standard deviation, respectively, of the SRD-type

estimator τ̂U(h). Exploiting linearity, one can write

bU(h) =
n∑

i=1

wi(h)(µU(Xi)− τU) and sU(h) =

(
n∑

i=1

wi(h)
2σ2

U,i

)1/2

,

where µU(x) = (µY (x) − τY )/τT − τY (µT (x) − τT )/τ
2
T depends on the functions µY and µT ,

and σ2
U,i = V(Ui|Xi) is the conditional variance of Ui given Xi. Because the bias depends

on (µY , µT ) through the function µU ∈ FH(BY /|τT | + |τY |BT/τ
2
T ) only, its “worst case”

magnitude over the functions contained in F δ is

sup
(µY ,µT )∈Fδ

|bU(h)| = bU(h) ≡ −1

2

(
BY

|τT |
+

|τY |BT

τ 2T

) n∑
i=1

wi(h)X
2
i sign(Xi).

An infeasible bias-aware DM CI is then given by

Cα
∆ =

[
θ̂(hU)± cv1−α

(
bU(hU)/sU(hU)

)
sU(hU)

]
, (A.1)

where hU = argminh cv1−α

(
bU(h)/sU(h)

)
sU(h) is the bandwidth that minimizes its length.

It is easy to see that this optimal bandwidth must such that neither bias nor variance
dominate asymptotically, which means that limn−1/5hU = c > 0.

Making this CI feasible would require three main modifications: (i) replacing the unknown
bias bound with an estimate b̂U(h) which replaces τY and τT with feasible estimates, such as
local linear estimates τ̂Y = τ̂Y (gY ) and τ̂T = τ̂T (gT ) based on preliminary bandwidths gY and
gT ; (ii) replacing the standard deviation sU(h) with a valid standard error, which could be
achieved as in Section 6.1 using estimates of the form Ûi = (Yi − τ̂Y )/τ̂T − τ̂Y (Ti − τ̂T )/τ̂

2
T of

the Ui); (iii) replacing the bandwidth hU with an empirical analogue, like an adaptation of
the procedure in Section 6.2. As such modifications can be shown not to affect the first-order
asymptotic coverage properties of the CI under standard regularity conditions, we base our
result on a comparison of Cα

∗ and Cα
∆.

To prove Theorem 3, we make the dependence of quantities like hM(c) on c again explicit.
We begin by noting that the events θ(n) ∈ Cα

∆ and θ(n) ∈ Cα
∗ occur if and only if

|θ̂(hU)− θ(n)|
sU(hU)

− cv1−α

(
bU(hU)

sU(hU)

)
≤ 0 (A.2)

and |τ̂M(hM(θ(n)), θ(n))|
sM(hM(θ(n)), θ(n))

− cv1−α

(
bM(hM(θ(n)), θ(n))

sM(hM(θ(n)), θ(n))

)
≤ 0, (A.3)
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respectively. Because the left-hand sides of the last two displays both approximately behave
like a constant plus the absolute value of a normal random variable with variance 1 in large
samples, it suffices to show that the difference between the respective left-hand sides of the
last two displays converges to zero in probability, uniformly over F δ. To show this, note first
that standard delta method arguments yield that the left-hand side of (A.2) is equal to

|τ̂U(hU)− κn−2/5|
sU(hU)

− cv1−α

(
bU(hU)

sU(hU)

)
+ oP,Fδ(1).

Next, note that Ui = Mi(θ)/τT , and that we thus have that

τ̂U(h) =
τ̂M(h, θ)

τT
, sU(h) =

sM(h, θ)

|τT |
, bU(h) =

bM(h, θ)

|τT |
,

for any h > 0. Substituting these identities into the definition of hU , we also find that

hU = argmin
h

cv1−α

(
bM(h, θ)

sM(h, θ)

)
· sM(h, θ)

|τT |
= argmin

h
cv1−α

(
bM(h, θ)

sM(h, θ)

)
sM(h, θ) = hM(θ).

The left-hand side of (A.2) is thus equal to

|τ̂M(hM(θ), θ)− τTκn
−2/5|

sM(hM(θ), θ)
− cv1−α

(
bM(hM(θ), θ)

sM(hM(θ), θ)

)
+ oP,Fδ(1).

Now consider the term on the left-hand side of (A.3). By simple algebra, we have that for
n sufficiently large

bM(h, θ(n)) = bM(h, θ) + (|θ + n−2/5κ| − |θ|)bT (h) = bM(h, θ) + |n−2/5κ|bT (h),

sM(h, θ(n))2 = s2M(h, θ) + n−2/5κ ((2θ + n−2/5κ)s2T (h)− 2s̃M(θ),T (h)),

with s̃M(θ),T (h) = (
∑n

i=1 wi(h)
2σM(θ),T,i)

1/2 a conditional covariance term of the same order
as sT (h). These identities imply that τ̂M(h, θ) and τ̂M(h, θ(n)) have the same first-order
bias and standard deviation along any bandwidth sequence h of order n−1/5; and from
Theorem 2.1(i) in Armstrong and Kolesár (2020), we know that to first order the optimal
bandwidth that minimizes the length of a bias-aware CI depends on the first-order bias and
standard deviation only. This yields that hM(θ(n)) = hM(θ)(1+ oP,Fδ(1)). Arguing as in the
proof of Lemma A.1, the left-hand side of (A.3) is thus equal to

|τ̂M(hM(θ), θ)− τTκn
−2/5|

sM(hM(θ), θ)
− cv1−α

(
bM(hM(θ), θ)

sM(hM(θ), θ)

)
+ oP,Fδ(1),
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which completes the proof.
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