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S1. PERFORMANCE OF HONEST CIS AND ALTERNATIVE CRV CIS IN CPS
SIMULATION STUDY

In this section, we again consider the CPS placebo study from Section 2 in the main text
to study the performance of the honest CIs proposed in the Section 5. Given that the
typical increase in log wages is about 0.017 per extra year of age, guided by the heuristic
in Section 5.1, we set K = 0.045 for the BSD CIs. In addition, we also consider two
modifications of the CRV CIs that have been shown to perform better in settings with a
few clusters. The first modification, which we term CRV2, is a bias-reduction modification
analogous to the HC2 modification of the EHW variance estimator developed by Bell and
McCaffrey (2002). This modification makes the variance estimator unbiased when the errors
ui = Yi − M ′

iθh are homoscedastic and independent. To describe it, let M denote the
Nh× (2p+ 2) design matrix with ith row given by M ′

i , and let Mg denote the ng rows of the
design matrix M for which M ′

i = m(xg)′ (that is, those rows that correspond to “cluster” g).
Here ng is the number of observations with Xi = xg. The CRV2 variance estimator replaces
Ω̂CRV in the definition of σ̂2

CRV given in Section 3.1 with

Ω̂CRV2 = 1
Nh

Gh∑
g=1

M′
gAgûgû′gAgMg,

where ûg is an ng-vector of the regression residuals corresponding to “cluster” g, and Ag

is the inverse of the symmetric square root of the ng × ng block of the annihilator matrix
INh
−M(M′M)−1M′ corresponding to “cluster” g, Ing −Mg(M′M)−1M′

g. Thus, Ag[Ing −
Mg(M′M)−1M′

g]Ag = Ing . In contrast, the CRV estimator, as implemented in STATA,
sets Ag =

√
Gh/(Gh − 1)× (Nh − 1)/(Nh − 2(p+ 1))Ing . The second modification that we

consider also uses the CRV2 variance estimator, but replaces the usual 1.96 critical value in
the construction of 95% confidence intervals with a critical value based on a t-distribution
∗WoodrowWilson School and Department of Economics, Princeton University, mkolesar@princeton.edu
†Department of Economics, University of Mannheim, rothe@vwl.uni-mannheim.de

S1



with a degrees of freedom, where a is chosen so that the first two moments of σ̂CRV2/V(τ̂ |M)
match that of χ2

a/a, assuming correct specification and independent homoscedastic errors.
This modification has also been proposed by Bell and McCaffrey (2002), and, as discussed
in Imbens and Kolesár (2016), it generalizes the classic Welch-Sattherthwaite solution to the
Behrens-Fisher problem.

The results are reported in Table S1 for the linear specification (p = 1), and in Table S2
for the quadratic specification (p = 2). For convenience, the tables also reproduce the results
for inference based on EHW and CRV standard errors, reported in Table 1 in the main text.
To compare the length of honest CIs and CRV-BM CIs to those of EHW, CRV, and CRV2
CIs, the tables report average normalized standard errors. We define normalized standard
error of a CI [a, b] with nominal level 95% as (b − a)/(2 × 1.96), so that the CI is given
by adding and subtracting the normalized standard error times the usual 1.96 critical value
from its midpoint. Finally, Table S3 compares magnitudes of the various clustered standard
errors relative to that of the conventional EHW estimator.

The coverage properties of honest CIs are excellent: they achieve at least 95% coverage
in all specifications. The length of BME CIs is moderately larger than that of EHW CIs in
specifications in which EHW CIs achieve proper coverage. The BME CIs are much longer,
especially for large h or small Nh. This is in line with the discussion in Section 5.2.

In designs in which the fitted model is close to being correctly specified (all quadratic
specifications and linear specifications with h < 15) CRV-BM CIs do about as well as EHW
CIs in delivering approximately correct coverage, while the CRV2 adjustment alone is not
sufficient to bring coverage close to 95%. On the other hand, in designs in which the fitted
model is misspecified (linear specifications with h = 15 or h = ∞), the coverage of CRV-
BM CIs is only slightly better than that of EHW CIs; the improvement in coverage is not
sufficient to bring coverage close to 95%. This contrasts with the coverage of the honest
CIs, which remains close to, or above, 95%. Furthermore, the CRV-BM CIs are much more
variable than EHW, and thus the average length of the CRV-BM CI, as measured by the
normalized SE, is greater than in the case of EHW: in the designs considered, they are about
40% longer on average, sometimes more than twice as long. In part due to this variability, the
probability that CRV2 and CRV-BM CIs are longer than EHW CIs in a particular sample is
not very close to 1, and falls between 0.7 and 0.9 for most of the designs that we consider, as
shown in Table S3. This suggests, in line with the results in Section 6, that in any particular
empirical application, these CIs may not be larger than EHW CIs.

S2. ADDITIONAL SIMULATION EVIDENCE
In this section, we consider a second Monte Carlo exercise in which we simulate realizations
of an outcome variable Yi and a running variable Xi from several data generating processes
(DGPs) with different conditional expectation functions and different numbers of support
points, and also several sample sizes. This allows us to disentangle the effect of model
misspecification and the number of the support points on the performance of CRV-based
inference; something that was not possible in the CPS placebo study from Section 2.

Each of our DGPs is such that the support of the running variable is the union of an
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equally spaced grid of G− points −1,−(G−− 1)/G−, . . . ,−1/G− and an equally spaced grid
of G+ points 1/G+, 2/G+, . . . , 1. We consider values G−, G+ ∈ {5, 25, 50}. The distribution
of Xi then has probability mass 1/2 spread equally across the support points above and
below zero, so that P (Xi = xg) = 1/G+ for xg > 0 and P (Xi = xg) = 1/G− for xg < 0.

The outcome variable is generated as Yi = µ(Xi) + εi, where εi and Xi are independent,
εi ∼ N (0, 0.1), and

µ(x) = x+ λ1 · sin(π · x) + λ2 · cos(π · x).

We also generate a treatment indicator that is equal to one if Xi ≥ 0, and equal to zero oth-
erwise. Since µ(x) is continuous at x = 0 for every (λ1, λ2), the causal effect of our treatment
at the cutoff is zero in our all our DGPs. We consider (λ1, λ2) ∈ {(0, 0), (0.05, 0), (0, 0.05)}
and the sample sizes Nh ∈ {100, 1000, 10000}, and estimate the treatment effect by fitting
the linear model

Yi = β0 + τ · I {Xi ≥ 0}+ β− ·Xi + β+ · I {Xi ≥ 0} ·Xi + Ui. (S1)

Note that this specification is analogous to the model (2.1) in the main text with p = 1 and
h = 1. We do not consider alternative values of h and p in this simulation exercise because
variation in the accuracy of the fitted model is achieved by varying the DGP.

To asses the accuracy of model (S1), we plot the versions of µ(x) that we consider together
with the corresponding linear fit in Figure S1 for the case that G− = G+ = 10. As one can see,
the departure from linearity is rather modest for (λ1, λ2) ∈ {(0.05, 0), (0, 0.05)}. In Tables S4–
S6 we then report the empirical standard deviation of τ̂ , the empirical coverage probabilities
of the EHW and CRV CIs with nominal level 95%, as well as the coverage probabilities of
the honest CIs, and the CRV2 and CRV-BM modifications. For BSD CIs, we consider the
values K = π2/20, which corresponds to the largest value of the second derivative of µ for
the designs considered, as well as the more conservative choice K = π2/10.1 To compare
length, the tables report normalized standard errors, defined in Section S1.

Table S4 reports results for the case (λ1, λ2) = (0, 0), in which the true conditional
expectation function is linear and thus our fitted model is correctly specified. We see that
the CRV standard error is a downward-biased estimate of the standard deviation of τ̂ , and
therefore the CRV confidence interval under-covers the treatment effect. The distortion is
most severe for the case with the least number of points on either side of the threshold
(G− = G+ = 5), where it amounts to a deviation of 20 percentage points from the nominal
level. With more support points the distortion becomes less pronounced, but it is still
noticeable even for G− = G+ = 50. These findings are the same for all the sample sizes
we consider. The distortion of CRV2 CIs is slightly smaller, and the coverage of CRV-BM
is close to 95%, at the cost of a loss in power (as measured by the average normalized
standard error). The honest CIs perform well in terms of coverage, although they are quite
conservative: this is the price for maintaining good coverage over CEFs that are less smooth

1As pointed out in the main text, the choice of K requires subject knowledge, as it implies certain
restrictions on the shape of µ(x). This is generally difficult to mimic in the context of a simulation study
based on an artificial DGP.
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than µ(x) = x (see Armstrong and Kolesár (2017) for theoretical results on impossibility of
adaptation to smooth functions).

Table S5 reports results for the case (λ1, λ2) = (0, .05). Here µ(x) is nonlinear, but due
to the symmetry properties of the cosine function τh = 0. This setup mimics applications in
which the bias of τ̂ is small even though the functional form of µ(x) is misspecified. In line
with our asymptotic approximations, the CRV standard error is downward biased for smaller
values of N , and upward biased for larger sample sizes. Simulation results for the case that
N = 107, which are not reported here, also confirm that the CRV standard error does not
converge to zero. Correspondingly, the CRV CI under-covers the treatment effect for smaller
values of N , and over-covers for larger values. The distortions are again more pronounced for
smaller values of G+ and G−. The CRV-BM CIs correct for these size distortions, while the
CRV2 modification alone is not sufficient. The honest CIs perform well in terms of coverage,
but they are again quite conservative: again this is due to the possible bias adjustment built
into the CIs.

Table S6 reports results for the case (λ1, λ2) = (.05, 0). Here the linear model is misspec-
ified as well, but in such a way that τh is substantially different from zero; with its exact
value depending on G+ and G−. As with the previous sets of results, the CRV standard
error is downward biased for smaller values of N , and upward biased for larger sample sizes.
However, since τh 6= 0 here, the coverage probability of the CRV confidence interval is below
the nominal level for all N , and tends to zero as the sample size increases. For smaller values
of N , the coverage properties of the CRV confidence interval are also worse than those of the
standard EHW confidence interval. The CRV confidence interval only performs better in a
relative sense than EHW confidence interval when N is large, but for these cases both CIs
are heavily distorted and have coverage probability very close to zero. So in absolute terms
the performance of the CRV confidence interval is still poor. The same conclusion applies
to the CRV2 and CRV-BM modifications. The assumption underlying the construction of
BME CIs is violated for G+ = G− = 5, since in this case, the specification bias of a linear
approximation to the CEF is actually worse at zero than at other support points. Conse-
quently, BME CIs undercover once Nh is sufficiently large. In contrast, the coverage of BSD
CIs remains excellent for all specifications, as predicted by the theory.

In summary, the simulation results for EHW and CRV CIs are in line with the theory
presented in Sections 3 and 4 in the main text, and the results for CRV2 and CRV-BM
CIs are in line with the results presented in Section S1. The honest CIs perform well in
terms of coverage, although BME CIs are overly conservative if Nh is small or the number of
support points is large. As discussed in Section 5.2, they are best suited to applications with
a small number of support points, in with a sufficient number of observations available for
each support point. BSD CIs, combined with appropriate choice of the smoothness constant
K, perform very well.

S3. LOWER BOUND FOR K

In this section, we use ideas in Armstrong and Kolesár (2017) to derive and estimate a left-
sided CI for a lower bound on the smoothness constant K under the setup of Section 5.1 in
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the main text.
To motivate our procedure, consider measuring the curvature of the CEF µ over some

interval [x1, x3] by measuring how much it differs from a straight line at some point x2 ∈
(x1, x3). If the function were linear, then its value at x2 would equal λµ(x1) + (1− λ)µ(x3),
where λ = (x3 − x2)/(x3 − x1) is the distance of x3 to x2 relative to the distance to x1.
The next lemma gives a lower bound on K based on the curvature estimate λµ(x1) + (1 −
λ)µ(x3)− µ(x2).

Lemma S1. Suppose µ ∈MH(K) for some K ≥ 0. Then K ≥ |∆(x1, x2, x3)|, where

∆(x1, x2, x3) = 2(1− λ)µ(x3) + λµ(x1)− µ(x2)
(1− λ)x2

3 + λx2
1 − x2

2
= 2(1− λ)µ(x3) + λµ(x1)− µ(x2)

(1− λ)λ(x3 − x1)2 . (S2)

Proof. We can write any µ ∈MH(K) as

µ(x) = µ(0) + µ′(0)x+ r(x) r(x) =
∫ x

0
(x− u)µ′′(u) du. (S3)

This follows by an argument given in the proof of Proposition 1 in Appendix B. Hence,

λµ(x1) + (1− λ)µ(x3)− µ(x2) = (1− λ)r(x3) + λr(x1)− r(x2)

= (1− λ)
∫ x3

x2
(x3 − u)µ′′(u) du+ λ

∫ x2

x1
(u− x1)µ′′(u) du.

The absolute value of the right-hand side is bounded by K times (1 − λ)
∫ x3
x2

(x3 − u) du +
+λ

∫ x2
x1

(u−x1) du = (1−λ)(x3−x2)2/2 +λ(x2−x1)2/2, which, combined with the definition
of λ, yields the result.

Remark S1. The maximum departure of µ from a straight line over [x1, x3] is given by
maxλ∈[0,1]|(1−λ)µ(x3) +λµ(x1)−µ(λx1 + (1−λ)x3)|. Lemma S1 implies that this quantity
is bounded by maxλ∈[0,1](1−λ)λ(x3−x1)2K/2 = K(x3−x1)2/8, with the maximum achieved
at λ = 1/2. We use this bound for the heuristic for the choice of K described in Section 5.1.

While it is possible to estimate a lower bound on K using Lemma S1 by fixing points
x1, x2, x3 in the support of the running variable and estimating ∆(x1, x2, x3) by replacing
µ(xj) in (S2) with the sample average of Yi for observations with Xi = xj, such a lower
bound estimate may be too noisy if only a few observations are available at each support
point. To overcome this problem, we consider curvature estimates that average the value of
µ over s neighboring support points. To that end, the following generalization of Lemma S1
will be useful.

Lemma S2. Let Ik = [xk, xk], k = 1, 2, 3 denote three intervals on the same side of cutoff
such that xk ≤ xk+1. For any function g, let En[g(xk)] = ∑N

i=1 g(xi)I {xi ∈ Ik} /nk, nk =∑N
i=1 I {xi ∈ Ik} denote the average value in interval k. Let λn = En(x3 − x2)/En(x3 − x1).
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Then K ≥ |µ(I1, I2, I3)|, where

∆(I1, I2, I3) = 2λnEnµ(x1) + (1− λn)Enµ(x3)− Enµ(x2)
En [(1− λn)x2

3 + λnx2
1 − x2

2] . (S4)

Proof. By Equation (S3), for any λ ∈ [0, 1] and any three points x1, x2, x3, we have

λµ(x1) + (1− λ)µ(x3)− µ(x2) = δµ′(0) + λr(x1) + (1− λ)r(x3)− r(x2)

= (1− λ)
∫ x3

x2
(x3 − u)µ′′(u) du+ λ

∫ x2

x1
(u− x1)µ′′(u) du+ δ

(
µ′(0) +

∫ x2

0
µ′′(u) du

)
where δ = (1 − λ)x3 + λx1 − x2. Setting λ = λn, taking expectations with respect to the
empirical distribution, observing that Enδ = 0 and Enx2 = (1 − λn)Enx3 + λnEnx1, and
using iterated expectations yields

λnEnµ(x1) + (1− λn)Enµ(x3)− Enµ(x2)

= (1− λn)En
∫ x3

x2
(x3 − u)µ′′(u) du+ λnEn

∫ x2

x1
(u− x1)µ′′(u) du+ S, (S5)

where

S = (1− λn)En
∫ x2

x2
(Enx3 − u)µ′′(u) du+ En

∫ x2

x2
(λnu− λnEnx1 + Enx2 − x2)µ′′(u) du

=
∫ x2

x2
q(u)µ′′(u) du, q(u) = (1− λn)(Enx3 − u) + EnI {u ≤ x2} (u− x2).

Observe that the function q(x) is weakly positive on I2, since q(x2) = (1−λn)(Enx3−x2)+x2−
Enx2 = λn(x2−Enx1) ≥ 0, q(x2) = (1−λn)(Enx3−x2) ≥ 0, and q′(u) = λn−EnI {x2 ≤ u},
so that the first derivative is positive at first and changes sign only once. Therefore, the
right-hand side of (S5) is maximized over µ ∈ FM(K) by taking µ′′(u) = K and minimized
by taking µ′′(u) = −K, which yields

|λnEnµ(x1) + (1− λn)Enµ(x3)− Enµ(x2)| ≤ K

2 En
[
(1− λn)x2

3 + λnx
2
1 − x2

2

]
.

The result follows.

To estimate a lower bound on K for three fixed intervals I1, I2 and I3, we simply replace
Enµ(xk) in (S4) with the sample average of Yi over the interval Ik. We do this over multiple
interval choices. To describe our choice of intervals, denote the support points of the running
variable by x−G− < · · · < x−1 < 0 ≤ x+

1 < · · · < x+
G+ , and let J+

ms = [x+
ms+1−s, x

+
ms] denote

the mth interval containing s support points closest to the threshold, and similarly let
J−ms = [x−ms, x−ms+1−s]. To estimate the curvature based on the intervals J+

3k−2,s, J+
3k−1,s and
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J+
3k,s, we use the plug-in estimate

∆̂+
ks = 2

λksy(J+
3k−2,s) + (1− λks)y(J+

3k−1,s)− y(J+
3k,s)

(1− λks)x2(J+
3k,s) + λksx2(J3k−2,s)− x2(J+

3k−1,s)
,

where we use the notation y(I) = ∑N
i=1 YiI {Xi ∈ I} /n(I), n(I) = ∑N

i=1 I {Xi ∈ I}, and
x2(I) = ∑N

i=1 XiI {Xi ∈ I} /n(I), and λks = (x(J+
3k,s)− x(J+

3k−1,s))/(x(J+
3k,s)− x(J+

3k−2,s)).
For simplicity, we assume that the regression errors εi = Yi − µ(Xi) are normally dis-

tributed with conditional variance σ2(Xi), conditionally on the running variable. Then ∆̂+
ks

is normally distributed with variance

V(∆̂+
ks) = 2

λ2
ksσ

2(J+
3k−2,s)/n(J+

3k−2,s) + (1− λks)σ2(J+
3k−1,s)/n(J+

3k−1,s) + σ2(J+
3k,s)/n(J+

3k,s)[
(1− λks)x2(J+

3k,s) + λksx2(J3k−2,s)− x2(J+
3k−1,s)

]2 .

By Lemma S2 the mean of this curvature estimate is bounded by |E[∆̂+
ks]| ≤ K. Define ∆̂−ks

analogously.
Our construction of a lower bound for K is based on the vector of estimates ∆̂s =

(∆̂−1s, . . . , ∆̂−M−s, ∆̂
+
1s, . . . , ∆̂+

M+s), where M+ and M− are the largest values of m such that
x+

3m,s ≤ xG+ and x−3m,s ≥ xG− .
Since elements of ∆̂s are independent with means bounded in absolute value by K, we

can construct a left-sided CI for K by inverting tests of the hypotheses H0 : K ≤ K0 vs
H1 : K > K0 based on the sup-t statistic maxk,q∈{−,+}|∆̂q

ks/V(∆̂q
ks)1/2|. The critical value

q1−α(K0) for these tests is increasing in K0 and corresponds to the 1 − α quantile of
maxk,q∈{−,+}|Zq

ks + K0/V(∆̂q
ks)1/2|, where Zq

ks are standard normal random variables, which
can easily be simulated. Inverting these tests leads to the left-sided CI of the form [K̂1−α,∞),
where K̂1−α solves maxk,q∈{−,+}|∆̂q

ks/V(∆̂q
ks)1/2| = q1−α(K̂1−α). Following Chernozhukov

et al. (2013), we use K̂1/2 as a point estimate, which is half-median unbiased in the sense
that P (K̂1/2 ≤ K) ≥ 1/2.

An attractive feature of this method is that the same construction can be used when the
running variable is continuously distributed. To implement this method, one has to choose
the number of support points s to average over. We leave the optimal choice of s to future
research, and simply use s = 2 in the empirical applications in Section 6 of the main text.
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Table S1: Inference in CPS simulation study for placebo treatment: Linear specification.

Avg. normalized SE CI coverage rate (%)

h τh Nh SD(τ̂) EHW CRV CRV2 BM BME BSD EHW CRV CRV2 BM BME BSD

5 −0.008 100 0.239 0.234 0.166 0.218 0.364 0.606 0.309 93.8 77.3 86.3 96.9 100 97.2
500 0.104 0.104 0.073 0.097 0.160 0.253 0.170 94.7 78.0 86.8 96.7 100 97.9

2000 0.052 0.052 0.036 0.048 0.079 0.125 0.109 94.9 77.3 86.6 96.6 100 99.7
10000 0.021 0.023 0.015 0.020 0.033 0.055 0.064 96.1 77.2 86.6 96.9 100 99.9

10 −0.023 100 0.227 0.223 0.193 0.218 0.270 0.946 0.394 93.9 87.3 90.8 95.2 100 97.0
500 0.099 0.099 0.086 0.097 0.117 0.385 0.215 94.4 87.6 91.1 95.2 100 98.0

2000 0.049 0.050 0.044 0.049 0.059 0.187 0.131 93.0 86.0 89.8 94.3 100 99.1
10000 0.021 0.022 0.021 0.024 0.029 0.086 0.077 82.9 78.1 83.8 91.0 100 99.1

15 −0.063 100 0.222 0.216 0.197 0.214 0.246 1.137 0.453 92.7 88.4 90.7 94.4 100 96.8
500 0.095 0.096 0.089 0.096 0.108 0.507 0.242 89.9 85.3 87.9 91.7 100 98.5

2000 0.048 0.048 0.047 0.052 0.058 0.243 0.146 73.0 71.2 75.6 81.6 100 98.7
10000 0.020 0.021 0.028 0.030 0.034 0.118 0.087 15.3 34.8 43.9 55.8 100 98.7

∞ −0.140 100 0.208 0.205 0.196 0.208 0.229 1.281 0.513 88.6 85.6 87.8 90.9 100 96.5
500 0.091 0.091 0.094 0.099 0.107 0.822 0.269 66.7 67.3 70.8 75.6 100 97.8

2000 0.045 0.046 0.058 0.061 0.066 0.460 0.162 13.4 29.2 34.5 41.1 100 98.0
10000 0.019 0.020 0.043 0.046 0.049 0.271 0.097 0.0 0.6 1.3 2.9 100 98.1

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM CIs. For BSD, M = 0.045. For CRV-BM, BME,
and BSD, Avg. normalized SE refers to average normalized standard error, described in the text. For EHW, CRV, and CRV2, it
corresponds to average standard error, averaged over the simulation runs.
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Table S2: Inference in CPS simulation study for placebo treatment: Quadratic specification.

Avg. normalized SE CI coverage rate

h τh Nh SD(τ̂) EHW CRV CRV2 BM BME BSD EHW CRV CRV2 BM BME BSD

5 −0.100 100 0.438 0.427 0.206 0.394 0.897 0.705 0.309 93.2 60.7 84.0 97.2 99.5 97.3
500 0.189 0.190 0.086 0.172 0.382 0.301 0.170 94.7 59.9 83.8 97.4 99.7 97.9

2000 0.093 0.095 0.042 0.084 0.187 0.149 0.109 95.1 58.7 83.2 97.4 99.8 99.7
10000 0.038 0.042 0.018 0.036 0.079 0.067 0.064 96.4 59.5 84.4 97.6 99.9 99.9

10 0.008 100 0.361 0.349 0.258 0.342 0.540 1.000 0.394 93.3 79.5 88.3 97.2 100 97.0
500 0.157 0.156 0.110 0.147 0.231 0.405 0.215 94.8 79.0 88.1 96.8 100 98.0

2000 0.077 0.078 0.055 0.073 0.115 0.196 0.131 94.7 79.4 88.1 96.8 100 99.1
10000 0.033 0.035 0.025 0.034 0.053 0.087 0.077 95.6 80.8 89.4 97.6 100 99.1

15 0.014 100 0.349 0.329 0.270 0.325 0.443 1.189 0.453 92.3 83.6 89.1 96.0 100 96.8
500 0.146 0.147 0.117 0.141 0.187 0.516 0.242 94.6 85.1 89.9 95.8 100 98.5

2000 0.073 0.073 0.058 0.070 0.092 0.243 0.146 94.6 83.9 89.7 95.7 100 98.7
10000 0.031 0.033 0.026 0.031 0.041 0.107 0.087 93.7 82.8 88.7 95.1 100 98.7

∞ −0.001 100 0.316 0.303 0.267 0.302 0.371 1.327 0.513 93.0 87.6 90.9 95.4 100 96.5
500 0.134 0.135 0.117 0.132 0.155 0.804 0.269 94.9 89.0 92.2 95.5 100 97.8

2000 0.068 0.067 0.058 0.065 0.077 0.402 0.162 94.7 88.7 91.6 95.4 100 98.0
10000 0.029 0.030 0.027 0.030 0.035 0.178 0.097 96.0 91.0 93.7 96.7 100 98.1

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM CIs. For BSD, M = 0.045. For CRV-BM, BME,
and BSD, Avg. normalized SE refers to average normalized standard error, described in the text. For EHW, CRV, and CRV2, it
corresponds to average standard error, averaged over the simulation runs.
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Table S3: Inference in CPS simulation study for placebo treatment: Comparison of relative
magnitude of EHW standard errors relative to CRV, CRV2 and CRV-BM standard errors
under linear and quadratic specification.

Linear Quadratic
Rate EHW SE < Rate EHW SE <

h τh Nh CRV CRV2 BM CRV CRV2 BM
5 −0.100 100 0.14 0.38 0.82 0.03 0.38 0.87

500 0.13 0.37 0.81 0.01 0.36 0.87
2000 0.13 0.36 0.80 0.01 0.34 0.86
10000 0.09 0.30 0.77 0.00 0.30 0.85

10 0.008 100 0.26 0.44 0.74 0.15 0.43 0.85
500 0.25 0.43 0.71 0.12 0.38 0.81
2000 0.27 0.44 0.72 0.11 0.37 0.81
10000 0.39 0.60 0.84 0.13 0.40 0.82

15 0.014 100 0.31 0.47 0.71 0.20 0.45 0.81
500 0.34 0.47 0.69 0.18 0.39 0.74
2000 0.45 0.61 0.79 0.17 0.38 0.72
10000 0.92 0.96 0.99 0.18 0.39 0.72

∞ −0.001 100 0.38 0.52 0.73 0.26 0.48 0.78
500 0.54 0.66 0.80 0.24 0.42 0.67
2000 0.93 0.96 0.99 0.23 0.41 0.66
10000 1.00 1.00 1.00 0.26 0.44 0.70

Note: Results are based on 10,000 simulation runs. BM refers to CRV-BM CIs. For CRV-BM CIs,
SE refers to average normalized standard error, described in the text.
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Table S4: Simulation results in second Monte Carlo exercise for µ(x) = x.

Avg. normalized SE CI coverage rate (%)

G+ G− Nh τh sd(τ̂) EHW CRV CRV2 BM BME BSD.49 BSD.99 EHW CRV CRV2 BM BME BSD.49 BSD.99

5 5 100 0 0.148 0.149 0.105 0.141 0.221 0.332 0.197 0.249 94.6 79.1 88.0 96.6 100.0 98.5 99.0
1000 0.046 0.047 0.032 0.044 0.068 0.097 0.091 0.124 95.7 77.5 88.0 96.6 100.0 99.0 99.5

10000 0.015 0.015 0.010 0.014 0.022 0.031 0.047 0.067 94.8 77.3 87.4 96.2 100.0 99.5 100.0
5 25 100 0 0.143 0.141 0.114 0.136 0.186 0.686 0.178 0.219 94.5 85.4 90.3 96.9 100.0 97.8 97.8

1000 0.044 0.044 0.036 0.043 0.057 0.248 0.078 0.102 95.5 87.2 91.1 96.9 100.0 98.6 98.1
10000 0.014 0.014 0.011 0.013 0.018 0.074 0.037 0.052 95.5 86.7 91.1 97.2 100.0 99.4 100.0

5 50 100 0 0.143 0.140 0.115 0.135 0.183 0.754 0.176 0.216 93.7 86.0 90.3 96.3 100.0 97.4 97.8
1000 0.043 0.044 0.036 0.042 0.056 0.397 0.077 0.100 95.3 87.3 91.3 97.1 100.0 99.0 98.1

10000 0.014 0.014 0.011 0.013 0.018 0.111 0.036 0.050 95.2 87.3 90.9 96.6 100.0 99.2 99.9
25 25 100 0 0.136 0.131 0.124 0.131 0.143 0.791 0.159 0.186 93.8 91.3 92.9 94.8 100.0 96.6 96.9

100000 0.040 0.041 0.039 0.041 0.044 0.280 0.064 0.076 95.5 93.2 94.5 95.7 100.0 97.9 98.0
10000 0.013 0.013 0.012 0.013 0.014 0.083 0.027 0.032 95.4 93.1 94.3 95.5 100.0 97.8 98.3

25 50 100 0 0.132 0.130 0.125 0.130 0.140 0.843 0.156 0.183 94.2 92.8 93.8 95.4 100.0 96.9 96.7
1000 0.042 0.041 0.039 0.041 0.043 0.430 0.063 0.074 94.7 93.0 93.9 95.0 100.0 97.4 97.6

10000 0.013 0.013 0.012 0.013 0.013 0.119 0.026 0.031 94.9 93.2 93.9 94.8 100.0 97.9 97.8
50 50 100 0 0.133 0.129 0.126 0.130 0.138 0.879 0.154 0.180 93.5 92.6 93.2 94.7 100.0 96.6 96.7

1000 0.040 0.041 0.040 0.041 0.042 0.472 0.062 0.072 95.3 94.1 94.8 95.4 100.0 97.6 97.7
10000 0.013 0.013 0.012 0.013 0.013 0.127 0.025 0.029 94.9 93.9 94.3 94.9 100.0 97.5 97.7

Note: Results are based on 5,000 simulation runs. BSD.49 and BSD.99 refer to BSD CIs withK = 0.493 andK = 0.986, respectively,
and BM refers to CRV-BM CIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.
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Table S5: Simulation results in second Monte Carlo exercise for µ(x) = x+ .05 · cos(π · x).

Avg. normalized SE CI coverage rate (%)

G+ G− Nh τh sd(τ̂) EHW CRV CRV2 BM BME BSD.49 BSD.99 EHW CRV CRV2 BM BME BSD.49 BSD.99

5 5 100 0 0.148 0.149 0.105 0.142 0.222 0.332 0.197 0.249 94.7 78.9 88.1 96.6 100.0 98.4 99.0
1000 0.046 0.047 0.033 0.044 0.069 0.098 0.091 0.124 95.7 78.4 89.0 96.9 100.0 99.0 99.5

10000 0.015 0.015 0.012 0.017 0.026 0.033 0.047 0.067 94.8 84.1 92.1 98.2 100.0 99.5 100.0
5 25 100 0 0.143 0.141 0.115 0.136 0.186 0.686 0.178 0.219 94.5 85.4 90.2 96.8 100.0 97.8 97.8

1000 0.044 0.044 0.036 0.043 0.058 0.248 0.078 0.102 95.5 87.3 91.4 97.0 100.0 98.5 97.8
10000 0.014 0.014 0.012 0.015 0.020 0.075 0.037 0.052 95.4 88.8 93.2 98.1 100.0 99.1 100.0

5 50 100 0 0.143 0.140 0.115 0.135 0.183 0.754 0.176 0.216 93.7 86.3 90.1 96.1 100.0 97.4 97.9
1000 0.043 0.044 0.036 0.043 0.057 0.397 0.077 0.100 95.3 87.6 91.6 97.3 100.0 98.9 98.0

10000 0.014 0.014 0.012 0.015 0.020 0.112 0.036 0.050 95.3 89.4 93.5 97.5 100.0 99.0 99.9
25 25 100 0 0.136 0.131 0.124 0.131 0.143 0.791 0.159 0.186 93.8 91.5 92.9 94.7 100.0 96.6 96.9

100000 0.040 0.041 0.039 0.041 0.044 0.280 0.064 0.076 95.4 93.1 94.5 95.8 100.0 97.9 98.0
10000 0.013 0.013 0.013 0.013 0.014 0.084 0.027 0.032 95.4 93.9 95.0 95.9 100.0 97.8 98.3

25 50 100 0 0.132 0.130 0.125 0.130 0.140 0.843 0.156 0.183 94.2 92.9 93.7 95.4 100.0 96.9 96.7
1000 0.042 0.041 0.039 0.041 0.043 0.430 0.063 0.074 94.7 92.9 93.9 95.1 100.0 97.4 97.7

10000 0.013 0.013 0.013 0.013 0.014 0.119 0.026 0.031 94.8 93.5 94.1 95.1 100.0 97.9 97.8
50 50 100 0 0.133 0.129 0.126 0.130 0.138 0.880 0.154 0.180 93.6 92.7 93.3 94.6 100.0 96.6 96.7

1000 0.040 0.041 0.040 0.041 0.042 0.472 0.062 0.072 95.3 94.1 94.8 95.5 100.0 97.6 97.7
10000 0.013 0.013 0.013 0.013 0.013 0.128 0.025 0.029 94.9 94.1 94.6 95.1 100.0 97.5 97.7

Note: Results are based on 5,000 simulation runs. BSD.49 and BSD.99 refer to BSD CIs withK = 0.493 andK = 0.986, respectively,
and BM refers to CRV-BM CIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.
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Table S6: Simulation results in second Monte Carlo exercise for µ(x) = x+ .05 · sin(π · x).

Avg. normalized SE CI coverage rate (%)

G+ G− Nh τh sd(τ̂) EHW CRV CRV2 BM BME BSD.49 BSD.99 EHW CRV CRV2 BM BME BSD.49 BSD.99

5 5 100 0 0.148 0.150 0.107 0.145 0.227 0.334 0.197 0.249 88.6 68.9 81.6 94.0 100.0 96.3 98.5
1000 0.046 0.047 0.039 0.054 0.084 0.102 0.091 0.124 37.3 27.7 47.5 76.2 96.0 97.2 99.2

10000 0.015 0.015 0.025 0.036 0.057 0.041 0.047 0.067 0.0 0.1 5.8 54.3 5.9 98.4 99.9
5 25 100 0 0.143 0.141 0.116 0.138 0.188 0.687 0.178 0.219 89.4 78.7 84.5 94.2 100.0 96.0 97.5

1000 0.044 0.044 0.040 0.049 0.065 0.252 0.078 0.102 47.7 39.9 53.0 72.6 100.0 97.0 97.7
10000 0.014 0.014 0.021 0.028 0.038 0.085 0.037 0.052 0.0 0.2 5.1 25.0 100.0 98.2 99.9

5 50 100 0 0.143 0.140 0.116 0.137 0.185 0.755 0.176 0.216 89.3 80.2 85.5 94.0 100.0 95.6 97.6
1000 0.043 0.044 0.039 0.048 0.064 0.400 0.077 0.100 49.4 41.3 53.9 72.9 100.0 97.1 98.0

10000 0.014 0.014 0.020 0.028 0.037 0.121 0.036 0.050 0.0 0.3 5.6 25.9 100.0 98.4 99.9
25 25 100 0 0.135 0.131 0.125 0.132 0.144 0.792 0.159 0.186 90.5 87.9 89.5 92.1 100.0 95.1 96.4

100000 0.040 0.041 0.041 0.042 0.045 0.283 0.064 0.076 59.4 57.8 61.4 65.9 100.0 97.0 97.7
10000 0.013 0.013 0.016 0.017 0.018 0.092 0.027 0.032 0.0 0.2 0.4 0.6 100.0 97.2 98.2

25 50 100 0 0.132 0.130 0.125 0.131 0.141 0.844 0.156 0.183 91.0 88.7 90.2 92.6 100.0 95.5 96.4
1000 0.042 0.041 0.040 0.042 0.044 0.431 0.063 0.074 60.0 58.3 61.1 64.5 100.0 96.3 97.5

10000 0.013 0.013 0.015 0.016 0.017 0.126 0.026 0.031 0.1 0.1 0.2 0.2 100.0 97.1 97.8
50 50 100 0 0.132 0.130 0.126 0.130 0.138 0.881 0.154 0.180 91.0 89.6 90.5 92.2 100.0 95.1 96.4

1000 0.040 0.041 0.040 0.041 0.043 0.474 0.062 0.072 62.2 61.0 62.8 64.9 100.0 96.4 97.5
10000 0.013 0.013 0.014 0.015 0.015 0.135 0.025 0.029 0.1 0.2 0.2 0.2 100.0 97.0 97.5

Note: Results are based on 5,000 simulation runs. BSD.49 and BSD.99 refer to BSD CIs withK = 0.493 andK = 0.986, respectively,
and BM refers to CRV-BM CIs. For CRV-BM, BME and BSD, Avg. normalized SE refers to average normalized standard error,
described in the text. For EHW, CRV and CRV2, it corresponds to average standard error, averaged over the simulation runs.
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Figure S1: Plot of µ(x) = x+ .05 ·cos(π ·x) (top panel) and µ(x) = x+ .05 ·sin(π ·x) (bottom
panel) for G− = G+ = 10. Dots indicate the value of the function at the support points of
the running variable; solid lines correspond to linear fit above and below the threshold.
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