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Abstract

Limited overlap between the covariate distributions of groups with different treat-
ment assignments does not only make estimates of average treatment effects rather
imprecise, but can also lead to substantially distorted confidence intervals. This pa-
per argues that this is because the coverage error of traditional confidence intervals is
driven by the number of observations in the areas of limited overlap. Some of these
“local sample sizes” can be very small in applications, up to the point that distri-
butional approximation derived from classical asymptotic theory become unreliable.
Building on this observation, this paper constructs confidence intervals based on clas-
sical approaches to small sample inference. The approach is easy to implement, and
has superior theoretical and practical properties relative to standard methods in em-
pirically relevant settings.
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1. Introduction

Empirical economic studies that involve estimating average treatment effects (ATEs) under

the assumption of unconfounded assignment (Rosenbaum and Rubin, 1983) often face the

problem of having only few observations in either the treatment or the non-treatment group

in some regions of the covariate space. Even if the overall sample size is large, such areas

of limited overlap can occur naturally if the propensity score takes on values close to either

0 or 1. Limited overlap has an adverse effect on the precision of many ATE estimators,

whose asymptotic variance increases sharply as propensity scores accumulate closer to the

boundaries of the unit interval. Moreover, nonparametric estimators of ATEs might converge

at slower-than-usual rates if the propensity score can be arbitrarily close to 0 or 1 (Khan and

Tamer, 2010). Appropriate overlap is thus important for obtaining precise ATE estimates,

and this fact is widely appreciated by practitioners (e.g. Imbens, 2004).

A more subtle issue, which has received less attention in the literature, is that limited

overlap also has a detrimental effect on inference. For example, the result in Khan and

Tamer (2010) implies that in the absence of strong overlap the usual 95% confidence interval

(CI) of the form “point estimate±1.96×standard error” may no longer be valid. This in turn

raises concerns about the accuracy of such a CI in applications where the propensity score

is bounded away from 0 and 1, but only by a relatively small constant. Indeed, simulation

results reported in this paper show that in finite samples the actual coverage probability of

such a CI can be substantially below its nominal level, making estimates seem more precise

than they are.

This paper explores the channels through which limited overlap affects the accuracy of

standard methods for inference, and provides a practical approach to address the issue. To

convey the main points, we consider a simple setup in which the covariates have known

finite support. This benchmark model has the advantage that most estimation strategies

commonly used in empirical practice deliver numerically identical results here. In this frame-
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work, we show that the coverage error of a standard CI is not driven by the overall sample

size, but by the numbers of observations in the smallest covariate-treatment cells. Since

under limited overlap some of these numbers are only modest, the coverage error can be

substantial. Inference on ATEs is thus hampered under limited overlap because of what one

might call “locally” small samples.

Given this result, we propose a robust CI based on classical methods for small sample

inference. Since with discrete covariates the natural ATE estimate is a linear combination

of independent sample means, inference in this setup can be thought of as a generalization

of the Behrens-Fisher problem (Behrens, 1928; Fisher, 1935), and be conducted using tools

developed for that context. Our proposed CI, which builds on Banerjee (1960) and Mickey

and Brown (1966), is based on a critical-value that adjusts in a data-driven way to the

degree of overlap. This approach leads to finite-sample valid inference under any degree of

overlap if the outcome data are normally distributed, has similarly good properties if the

normality assumption is at least approximately satisfied, and does not perform worse (in a

classic asymptotic sense) than standard methods if normality is clearly violated. We work

with normality since without some restriction of this type it would seem impossible to obtain

meaningful theoretical statements about the distribution of (studentized) average outcomes

in covariate-treatment cells with very few observations.

In empirical practice, concerns about limited overlap are often addressed by estimating

the ATE only for a subpopulation obtained by trimming units with propensity scores close

the boundaries of the unit interval from the data (Crump et al., 2009). These redefined

ATEs can be estimated with greater precision than the full-population ATE, and there

are no concerns about the validity of standard CIs in this context. On the other hand, if

treatment effects are heterogeneous, their average might be very different in the trimmed

population relative to the original one. Trimming can therefore introduce a substantial bias

in settings where the entire population is of policy relevance. Since observations are sparse
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in the trimmed areas by construction, it is difficult to determine the magnitude of this bias

from the data.1 Our robust CI should be seen as a complement to trimming, and not as

a replacement. Reporting point estimates and CIs for both a trimmed and the original

population in empirical applications with limited overlap offers a more nuanced view of the

informational content of the data than either procedure by itself.

Limited overlap can in principle also be addressed by imposing parametric restrictions

that allow extrapolation from regions of the covariate space with many observations to regions

of limited overlap where data are sparse. However, estimates based on such restrictions tend

to be highly sensitive to even minor changes of the model. The validity of any parametric

model in an area of limited overlap is also difficult to asses due to the small number of

observations in those regions. The empirical setting would thus have to strongly imply

a particular functional form for parametric extrapolation to be credible (e.g. Imbens and

Rubin, 2015, Chapter 14).

2. Setup

We consider the standard program evaluation setup where interest is in the causal effect of

a binary treatment on a scalar outcome. Let D be a treatment indicator such that D = 1 if

a unit receives the treatment, and D = 0 otherwise. Define Y (1) and Y (0) as the potential

outcome of the unit with and without receiving the treatment, respectively. The realized

outcome is Y = Y (D), and X is a vector of covariates. The data are an independent

and identically distributed sample {(Yi, Di, Xi)}ni=1 from the distribution of (Y,D,X). The

population average treatment effect (PATE) and sample average treatment effect (SATE)
1A similar comment applies to methods using a “vanishing” trimming approach based on an asymptotic

experiment in which an ever smaller proportion of observations is trimmed as the same size increases (e.g.
Khan and Tamer, 2010; Chaudhuri and Hill, 2014; Yang, 2014). Similarly to fixed trimming, such methods
face a bias/variance-type trade-off which due to the special structure of treatment effect models is generally
very challenging to resolve in finite samples.
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are given by

τP = E(Y (1)− Y (0)) and τS = 1
n

n∑
i=1

τ(Xi),

respectively, where τ(x) = E(Y (1)−Y (0)|X = x) is the conditional average treatment effect

(CATE).2 We also write µd(x) = E(Y |D = d,X = x) and σ2
d(x) = Var(Y |D = d,X = x).

Following Imbens (2000), we refer to pd(x) = P (D = d|X = x) as the generalized propensity

score, and write p(x) = p1(x) for the “ordinary” propensity score. Throughout the paper, we

maintain the ignorability condition of Rosenbaum and Rubin (1983), which asserts that the

treatment status is independent of the potential outcomes given the covariates, and that the

distribution of the covariates has the same support among the treated and the untreated.

Assumption 1. (i) (Y (1), Y (0))⊥D|X and (ii) 0 < p(X) < 1 with probability 1.

Under this assumption, the CATE is identified as τ(x) = µ1(x) − µ0(x), and the PATE

and SATE are identified as averages of τ(x) over the population and sampling distribution of

X, respectively. Estimators of the PATE that are semiparametrically efficient under certain

additional regularity conditions have been proposed for example by Hahn (1998), Hirano

et al. (2003) and Imbens et al. (2007). These estimators are also appropriate and efficient for

the SATE (Imbens, 2004). In addition to smoothness conditions on functions such as µd(x)

or p(x), the regularity conditions required by these estimators include that Assumption 1(ii)

is strengthened to a strong overlap condition:

ε < p(X) < 1− ε with probability 1 for some ε > 0. (2.1)

Khan and Tamer (2010) show that without (2.1) the semiparametric efficiency bound for

estimating τP or τS may not be finite, and thus no regular
√
n-consistent and asymptotically

normal estimator might exist. We informally refer to a setting where (2.1) only holds for
2Our terminology follows that of Crump et al. (2009). The terms conditional and sample average treatment

effect are sometimes used differently in the literature; see Imbens (2004) for example.
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some very small ε > 0 as having limited overlap.

3. Discrete Covariates

To show how exactly limited overlap affects the coverage error of standard CIs, and how

this issue can be addressed, it is instructive to consider a simple setup where X has finite

support X = {x1, . . . , xJ}, and the SATE is the parameter of interest.

3.1. Limited Overlap and Standard Inference. Write f(x) = P (X = x), letMd(x) =

{i : Di = d,Xi = x} be the set of indices of those observations with treatment status

Di = d and covariates Xi = x, let Nd(x) = #Md(x) be the cardinality of this set, and put

N(x) = N1(x)+N0(x). We refer to Nd(x) and nd(x) = E(Nd(x)) as the realized and expected

local sample size at (d, x) in the following. Writing

µ̂d(x) = 1
Nd(x)

∑
i∈Md(x)

Yi, f̂(x) = N(x)
n

, p̂d(x) = Nd(x)
N(x) , and p̂(x) = p̂1(x),

the natural estimator3 of the SATE (and the PATE) is then given by

τ̂ =
J∑
j=1

f̂(xj)τ̂(xj) = 1
n

n∑
i=1

τ̂(Xi), where τ̂(x) = µ̂1(x)− µ̂0(x).

The asymptotic variance ω2
S = ∑

d,j f(xj)σ2
d(xj)/pd(xj) of τ̂ as an estimator of the SATE can

be estimated consistently by

ω̂2
S =

∑
d,j

σ̂2
d(xj)
p̂d(xj)

· f̂(xj), where σ̂2
d(x) = 1

Nd(x)− 1
∑

i∈Md(x)
(Yi − µ̂d(x))2.

This estimator is numerically well-defined as long as mind,xNd(x) ≥ 2, and all our analysis

in the following is to be understood conditional on this. The resulting asymptotic normality

of the studentized estimator TS,n =
√
n(τ̂ − τS)/ω̂S then motivates the usual two-sided CI

3Note that with discrete covariates τ̂ is numerically identical to other popular estimators based on sample
analogues of alternative representations of ATEs. For example, our estimator also has an “inverse probability
weighting” representation τ̂ = n−1∑n

i=1 Yi(Di − p̂(Xi)) · (p̂(Xi)(1 − p̂(Xi)))−1, as in Hirano et al. (2003).
Working with discrete covariates thus shows that complications from limited overlap are not specific to one
estimation strategy.
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for τS with nominal level 1− α:

IS,1 =
(
τ̂ − zα · ω̂S/

√
n, τ̂ + zα · ω̂S/

√
n
)
,

where zα = Φ−1(1− α/2). The next proposition studies the coverage properties of IS,1.

Proposition 1. (i) Under regularity conditions (Hall and Martin, 1988), it holds that

P (τS ∈ IS,1) = 1− α + n−1φ(zα)q2(zα, f, p) +O
(
n−2

)
,

where φ(·) is the standard normal density, and q2(zα, f, p) is a polynomial in zα that is given

explicitly in the appendix.

(ii) For sequences f (n)(x) of covariate densities and p
(n)
d (x) of generalized propensity

scores such that nf (n)(x)p(n)
d (x)→∞ as n→∞ for all (d, x), it holds that

n−1φ(zα)q2(zα, f (n), p(n)) = O(nd∗(x∗)−1),

where (d∗, x∗) is the point at which the ratio p(n)
d (x)/f (n)(x) takes its smallest value; that is,

(d∗, x∗) is such that pd∗(x∗)/f(x∗) = lim infn→∞
(
mind,x p(n)

d (x)/f (n)(x)
)
.

The proposition shows that while the coverage error of IS,1 is formally of the order

O(n−1), it is effectively more similar to that of a CI computed from a sample whose size

is equal to the expected local sample size in the covariate-treatment cell where the ratio of

the generalized propensity score and the covariate density takes its smallest value. Under

limited overlap, this local sample size can be small itself. The coverage error of IS,1 can

therefore be substantial even when n is very large.

3.2. Robust Confidence Intervals. Since ATE inference under limited overlap has es-

sential properties of a small sample problem, the use of large sample approximations to

address the issue does not seem promising. Instead, we propose to adapt classical small

sample methods to our setting. To motivate the approach, note that without covariates the
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studentized estimator TS,n defined above is the test statistic of a two-sample t-test. Condi-

tional on the number of treated and untreated individuals, inference on τS then reduces to

the Behrens-Fisher problem of conducting inference on the difference of the means of two

populations with unknown and potentially different variances.

Our setting is a generalized version of the Behrens-Fisher problem, since conditional on

Mn = {(Xi, Di)}ni=1 the statistic TS,n is the studentized version of a linear combination of

2J independent sample means, each calculated from Nd(x) realizations of a random variable

with mean (−1)1−d · f̂(x)µd(x) and variance f̂(x)2σ2
d(x). We can thus apply techniques

from a longstanding literature in statistics that has studied solutions to Behrens-Fisher-type

problems with small group sizes. Instead of relying on first-order asymptotic theory, this

literature exploits assumptions about the distribution of the data. We consider the following

assumption with the same purpose in mind.

Assumption 2. Y |(D,X) = (d, x) ∼ N(µd(x), σ2
d(x)) for all (d, x) ∈ {0, 1} × X .

Assumption 2 is clearly restrictive; but without imposing some additional structure it

would seem impossible to conduct valid inference in the presence of small groups.4 Our

proposed robust CI for the SATE is given by

IS,2 =
(
τ̂ − cα(δmin)ρα · ω̂S/

√
n, τ̂ + cα(δmin)ρα · ω̂S/

√
n
)
,

where cα(δ) = F−1
t (1 − α/2, δ), Ft(·, δ) denotes the CDF of Student’s t-distribution with δ

degrees of freedom, δdj = Nd(xj)− 1, δmin = mind,j δdj, and

ρα =
∑d,j(cα(δdj)/cα(δmin))2 · f̂(xj)2σ̂2

d(xj)/Nd(xj)∑
d,j f̂(xj)2σ̂2

d(xj)/Nd(xj)

1/2

.

4One can think of Assumption 2 as an “asymptotically irrelevant parameterization”, as results obtained
without this condition via asymptotic arguments do not change if this assumption holds. This is the case
for the asymptotic normality of TS,n or Proposition 1, for example. Since the distribution of Y |D,X is
symmetric under Assumption 2, the summands in the definition of q2(t) in Proposition 1(i) that involve
γd(x) vanish, but the order of the coverage error and the statement of Proposition 1(ii) remain the same in
this case.
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The following proposition shows that under Assumption 2 the CI IS,2 does not under-cover

the parameter of interest in finite samples for all values of the covariate density and the

generalized propensity score, and is thus robust to weak overlap. It also shows that if

Assumption 2 does not hold IS,2 has the same first-order asymptotic coverage error as IS,1,

and is thus equally valid from a traditional large sample point of view.

Proposition 2. (i) Under Assumptions 1–2, we have that P (τS ∈ IS,2) ≥ 1− α. (ii) Under

Assumption 1 and the regularity conditions of Proposition 1, we have that P (τS ∈ IS,2) =

P (τS ∈ IS,1) +O(n−2).

The inequality in part (i) is sharp in the sense that inf{σ2
d
(xj):d=0,1;j=1,...,J} P (τS ∈ IS,2) =

1 − α. The CI IS,2 thus implicitly inverts the decision of a two-sided hypothesis test with

size α. This test is not similar, and in finite samples the coverage probability of IS,2 thus

generally exceeds 1 − α. However, our numerical results below suggest that the procedure

only leads to minimal over-coverage in realistic settings.5,6

CIs of the form of IS,2 go back to at least Banerjee (1960); see also Hayter (2014) for a

more recent reference. To understand their construction, note that IS,2 is not based on the

usual t-statistic TS,n. Instead, we begin by considering the class of test statistics of the form

TS,n(h) =
√
n(τ̂ − τS)
ω̂S(h) , ω̂2

S(h) =
∑
d,j

hdj ·
σ̂2
d(xj)
p̂d(xj)

· f̂(xj)

indexed by the vector h = (h01, . . . , h0J , h11, . . . , h1J)′ ∈ R2J
+ . This class comprises the

statistic TS,n by setting h = (1, . . . , 1)′. From an extension of the argument in Mickey and
5The work of Linnik (1966, 1968) and Salaevskii (1963) has shown that there are no exactly similar tests

for the Behrens-Fisher problem that have desirable properties. A procedure that has correct size and only
leads to minimal over-coverage even when cells contain as few as two observations thus appears to be very
reasonable for this setting.

6In view of Ibragimov and Müller (2016), we conjecture that the above result continues to hold if Assump-
tions 2 is weakened to allow the conditional distribution of the outcome variable to follow a scale mixture of
normals; but a formal proof of this statement is beyond the scope of this paper.
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Brown (1966), it follows that for every u > 0 and every vector h we have

P (TS,n(h) ≤ u|Mn) ≥ min
d,j

Ft(uh1/2
dj , δdj).

This lower bound on the CDF of TS,n(h) translates directly into a bound on its quantiles,

which in turn motivates CIs with nominal level 1− α of the formτ̂ −max
d,j

cα(δdj)
h

1/2
dj

· ω̂S(h)√
n
, τ̂ + max

d,j

cα(δdj)
h

1/2
dj

· ω̂S(h)√
n

 . (3.1)

One can show that setting h1/2
dj ∝ cα(δdj) for all (d, j) minimizes the length of this interval.

This choice of h then yields IS,2 as the shortest, and in this sense “optimal”, CI within the

class of intervals of the form (3.1).

The critical value cα(δmin)ρα used in the construction of IS,2 adapts automatically to

the degree of overlap. Some algebra that cα(δmin) ≥ cα(δmin)ρα ≥ cα(n − 2J), and that

these relationships can potentially hold with equality. The CI IS,2 is thus always wider

than IS,1; and if the realized size of some local sample is small, the difference in length

can be substantial. For example, if δmin = 1, which is the smallest value for which the CI

is numerically well-defined, and f̂(xj)2σ̂2
d(xj)/Nd(xj) ≈ 0 for all (d, j) except for that cell

corresponding to δmin, then cα(δmin)ρα ≈ cα(1) ≈ 6.48 · zα for α = .05. On the other hand,

IS,1 and IS,2 are very similar if δmin ≥ 50 or so, since at conventional significance levels the

quantiles of the standard normal distribution do not differ much from those of a t distribution

with at least 50 degrees of freedom.

4. General Covariates

In many empirical applications the covariates are continuously distributed, or have discrete

support that is sufficiently rich that there are less than two observations in some of the

cells. In such cases some aggregation or smoothing is needed to estimate treatment effects.

Among the many different empirical strategies that are available for this purpose, the one
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that combines most naturally with our approach to building robust CIs for the SATE is

subclassification on the propensity score (Cochran, 1968; Imbens and Rubin, 2015). We first

estimate the propensity score by some method deemed suitable for the respective context,

then choose a partition of [0, 1], and finally treat= an indicator for the cell containing a

unit’s estimated propensity score in the same way we treated a discrete covariate in Sec-

tion 3. Partitioning and propensity score estimation introduce a bias that can be reduced

by adjusting for covariates among units whose propensity scores fall within the same cell.

To describe the procedure formally, let be p̂(x) be an estimate of the propensity score,

choose constants {πj}Jj=0 satisfying 0 = π0 < π1 < . . . < πJ = 1, and put Sj(x) =

I(πj−1 ≤ p̂(x) < πj) for j = 1, . . . , J − 1 and SJ(x) = I(πJ−1 ≤ p̂(x) ≤ πJ). For any x ∈

Rdim(X) and K ∈ N, let RK(x) be a column vector containing all polynomials in x up to

order K − 1. We then write Rj(x) = Sj(x)RK(x), and define7

µ̂d(x) =
J∑
j=1

Rj(x)′β̂dj, where β̂dj = argmin
β

n∑
i=1

I(Di = d) (Yi −Rj(Xi)′β)2
.

The natural estimate of the SATE is τ̂ = n−1∑n
i=1(µ̂1(Xi)−µ̂0(Xi)); and following arguments

along the lines of those in Section 3.2, we obtain the robust CI

ĪS,2 =
(
τ̂ − cα(δ̄min)ρ̄α · ω̂S/

√
n, τ̂ + cα(δ̄min)ρ̄α · ω̂S/

√
n
)

where

ω̂S =
∑
d,j

L̂′jQ̂
−1
dj L̂jσ̂

2
dj, σ̂2

dj = 1
Ndj −K

n∑
i=1

Sj(Xi)I(Di = d)(Yi − µ̂d(Xi))2,

L̂j = 1
n

n∑
i=1

Rj(Xi), Q̂dj = 1
Ndj

n∑
i=1

I(Di = d)Rj(Xi)Rj(Xi)′,

ρ̄α =
∑d,j(cα(δ̄dj)/cα(δ̄min))2 · L̂′jQ̂−1

dj L̂jσ̂
2
dj/Ndj∑

d,j L̂
′
jQ̂
−1
dj L̂jσ̂

2
dj/Ndj

1/2

,

7The “argmin” operator in the following equation is to be understood such that it returns the solution
with the smallest Euclidean length in case the set of minimizers of the corresponding least squares problem
is not unique.
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with δ̄min = mind,j Ndj −K, δ̄dj = Ndj −K, and Ndj = ∑n
i=1 Sj(Xi)I(Di = d) the number of

observations with treatment status d in the jth cell of propensity score values. Now write

τ̄S = E(τ̂ |Mn), µ̄d(x) = E(µ̂d(x)|Mn), let {σ̄2
d,j, d = 0, 1; j = 1, . . . , J} be some positive

constants, and let j(x) be such that Sj(x)(x) = 1.

Corollary 1. Suppose Assumption 1 holds. (i) If Yi|Mn
iid∼ N (µ̄Di

(Xi), σ̄2
Di,j(Xi)), then

P (τ̄S ∈ ĪS,2) ≥ 1 − α. (ii) Under the regularity conditions of Proposition 1, we have that

P (τ̄S ∈ ĪS,2) = P (τ̄S ∈ ĪS,1) +O(n−2), where ĪS,1 = (τ̂ ± zα · ω̂S/
√
n) is the standard CI.

The parameter τ̄S is the sum of the SATE and the bias resulting from propensity score

estimation and the fact that propensity scores are only approximately constant on the chosen

partition of the unit interval. The corollary therefore justifies the use of ĪS,2 as an approxi-

mate CI for τS if the bias is deemed negligible relative to sampling uncertainty, and the data

generating process for the outcome (conditional on Mn) is sufficiently well approximated by

a piecewise linear model with normal, homoskedastic errors over sections of the covariate

space defined by the values of the estimated propensity score. Note that ĪS,2 adapts to the

choice of tuning parameters, as for example it generally becomes wider if a finer partition of

the unit interval or a higher-order polynomial approximation within cells is used.8 Also note

that the precise nature of the estimator of the propensity score does not affect our results

since inference on the SATE is conditional on Mn, and thus the estimate is effectively a

non-random quantity.

5. Simulations

This section reports results from a simple Monte Carlo study. To ensure that the SATE

remains constant across simulation runs, we hold Mn = {(Di, Xi)}ni=1 constant in each

repetition, and only simulate new values of the outcome variables. Specifically, we put
8The choice of tuning parameters affects the properties of nonparametric two-stage estimators and cor-

responding methods for inference in general, not just in treatment effect settings. See Robins and Ritov
(1997), Cattaneo et al. (2013), or Rothe and Firpo (2016) for some recently studies in this area.
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n = 2000, X = {1, 2, . . . , 10}, and construct Mn such that f̂(x) = 0.1 for all x ∈ X and

p̂(x) = 0.5 for x ∈ X\{10}. We then consider various scenarios where p̂(10) ranges over the

set {0.5, 0.25, . . . , 0.015, 0.01}. Our simulations thus include settings with good, moderate

and extremely limited overlap. We also put µ1(x) = x6/5, µ0(x) = 1, σ2
1(x) = 1 + 3x−9,

and σ2
0(x) = 1 for all x ∈ X . We generate outcomes as Yi = µDi

(Xi) + σDi
(Xi) · εDi

(Xi),

where εd(x) ∼ N (0, 1).9 In addition to the standard CI IS,1 and our robust CI IS,2, we also

consider three further CIs: IS,3 is based on using the linear specification µd(x) = β0d + β1dx

instead of a nonparametric specification for the outcome function;10 IS,4 is constructed by

approximating the distribution of Tn via the weighted bootstrap;11 and IS,5 is an infeasible

version of IS,1 that uses the true quantiles of the distribution of Tn (which are known in a

simulation context) as critical values. The performance of the latter CI serves as a bound

on what can potentially be achieved by feasible methods.

The left and right panel of Figure 1 show the finite sample coverage probabilities and

corresponding average lengths, respectively, of the various CIs for the SATE as a function of

p̂(10). By construction, the infeasible CI IS,5 has exact coverage for all levels of overlap, and

its average length serves as a benchmark for the other procedures. The coverage rate of the

standard CI IS,1 is close to the nominal level for p̂(10) ≥ 0.05, but heavily deteriorates for

smaller values of p̂(10), eventually deviating from the nominal level by about 17 percentage

points. As suggested by its construction, the coverage probability of our robust CI IS,2
9To investigate the robustness of IS,2 against deviation from Assumption 2, we also ran simulations where

the distribution of εd(x) is a mixture of a standard normal and a standard exponential distribution centered
at zero. That is, εd(x) ∼ λ · N (0, 1) + (1− λ) · (Exp(1)− 1), with λ ∈ [0, 1] a mixture weight. Results with
λ = .5 were virtually identical to those reported below, and are thus omitted.

10The unknown parameters are estimated by OLS, and a standard heteroskedasticity-robust variance
estimate is used to construct the t-statistic of the corresponding treatment effect estimate. Note that this
model is mildly misspecified among treated units.

11Bootstrap versions of the t-statistic Tn are created by assigning random weights (ω1, . . . ωn) to the
observations, where ωi = wi−Nd(x)−1∑

i∈Md(x) wi for i ∈Md(x) and the wi are i.i.d. standard exponential.
With this type of bootstrap every observation receives a positive weight, and we obtain positive within-cell
sample variances in every bootstrap data set. If we were to use a bootstrap based on independent sampling
of realized outcomes within covariate-treatment cells, this would often result in bootstrap data where the
outcome variable only takes on a single value in some cells, and thus the t-statistic is not well-defined.
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Figure 1: Empirical coverage probabilities (left panel) and average length (right panel) of IS,1
(standard; solid line), IS,2 (robust; short-dashed line), IS,3 (parametric; dot-dashed line), IS,4
(bootstrap; dotted line), and IS,5 (infeasible benchmark; long-dashed line) for values of p̂(10)
between 0.01 and 0.5 (or, equivalently, values of realized local sample size N1(10) between 2 and
100). Note that the horizontal axis of both plots is on a logarithmic scale.

is above the nominal level for all values of the propensity score. However, the deviations

are rather minor, and do not exceed 1.3 percentage points even for the smallest value of

p̂(10). The average length of IS,2 is also very similar to that of the infeasible CI IS,5 for

p̂(10) ≥ 0.05, which implies that the added robustness comes at hardly any meaningful

loss of power. The CI IS,3 based on a moderately misspecified regression function has poor

properties for p̂(10) ≤ 0.25, as low values of the propensity score amplify the misspecification

bias. This shows that addressing limited overlap by imposing parametric restrictions will only

work if this specification is very close to being correct. The bootstrap CI IS,4 has properties

that only marginally improve upon those of IS,1. The superior higher-order properties of the
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bootstrap under strong overlap thus have no impact on finite-sample performance in settings

with limited overlap.

6. Extensions

6.1. Population Treatment Effects. The idea behind the construction of IS,2 can be

extended to the PATE, which is arguably a more commonly used parameter in applications.

As an estimator of τP , the asymptotic variance of τ̂ is given by ω2 = ω2
S + ω2

P , where

ω2
P = E((τ(X) − τP )2). This parameter can be estimated by ω̂2 = ω̂2

S + ω̂2
P , where ω̂2

P =∑
j f̂(xj)(τ̂(xj)− τ̂)2. The statistic Tn =

√
n(τ̂ − τP )/ω̂ can then be decomposed as

Tn = ω̂S
ω̂
· TS,n + ω̂P

ω̂
· TP,n, where TP,n =

√
n(τS − τP )
ω̂P

and TS,n is as defined above. Under our assumptions TS,n and TP,n are asymptotically

independent. Since τS − τP = n−1∑n
i=1 τ(Xi) − E(τ(X)) does not involve the propensity

score, the CLT approximation P (TP,n ≤ u) ≈ Φ(u) should be accurate in large samples

irrespective of the degree of overlap. In Section 3.2 we also showed that under Assumption 2

the finite sample distribution of TS,n given Mn can be approximated as P (TS,n ≤ u|Mn) ≈

Ft(u/ρα(u), δmin), where α(u) is such that ρα(u) = u/cα(δmin). We can thus approximate

the distribution of Tn by a (data-dependent) weighted mixture of Ft(u/ρα(u), δmin) with a

standard normal CDF. Specifically, for positive constants ω1, ω2, δ, and ρ we define the

distribution function

G(u;ω1, ω2, δ, ρ) = P

(
ω1UC(δ, ρ) + ω2V

(ω2
1 + ω2

2)1/2 ≤ u

)
,

where U(δ, ρ) and V are independent random variables such that P (U(δ, ρ) ≤ u) = Ft(u/ρ, δ)

and P (V ≤ u) = Φ(u). This CDF is difficult to tabulate, but it can easily be computed

numerically or by simulation. Writing gα(δ, ρ) = G−1(1−α/2; ω̂S, ω̂P , δ, ρ) for α ∈ (0, .5), an
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extension of IS,2 to inference on τP is given by

IP,2 =
(
τ̂ − gα(δmin, ρα) · ω̂/

√
n, τ̂ + gα(δmin, ρα) · ω̂/

√
n
)
.

This CI can be shown to be robust to limited overlap in a similar sense as IS,2 when the

overall sample size is large. We omit a formal result in the interest of brevity.

6.2. Treatment Effects on the Treated. Our approach can easily be extended to the

cases of the population and sample ATE on the treated (PATT and SATT, respectively).

These alternative causal parameters are given, respectively, by

τP,T = E(Y (1)− Y (0)|D = 1) and τS,T = 1
N1

∑
i∈M1

τ(Xi),

with M1 = {i : Di = 1} the set of the indices of those units that receive the treatment.

Identification is achieved under a weaker version of Assumption 1 which only requires that

(i) Y (0)⊥D|X and (ii) p(X) < 1 with probability 1. Let N1 = #M1 denote the number of

treated units, and put f̂1(x) = N1(x)/N1, and µ̂1 = N−1
1
∑n
i∈M1 Yi. The natural estimator of

both the PATT and the SATT is

τ̂T = µ̂1 −
J∑
j=1

µ̂0(xj)f̂1(xj).

Conditional on Mn = {(Di, Xi)}ni=1, τ̂T is a linear combination of 1 + J independent sample

means. Since its structure is thus analogous to that of τ̂ , we can employ the same idea for

constructing a robust CI. As an estimator of the SATT, the asymptotic variance of θ̂T is given

by ω2
S,T = σ2

1/p1 + ∑
j f1(xj)2σ2

0(xj)/p0(xj), where σ2
1 = Var(Y |D = 1) and p1 = P (D = 1).

Now let σ̂2
1 = (N1 − 1)−1∑n

i∈M1(Yi − µ̂1)2, p̂1 = N1/n, and define

IS,2,T =
(
τ̂T − cα(δmin)ρα · ω̂S,T/

√
n, τ̂T + cα(δmin)ρα · ω̂S,T/

√
n
)
,
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where δmin = min{δ1, δ01, . . . , δ0J}, ω̂2
S,T is the sample analogue of ω2

S,T ,

ρα =
(cα(δ1)/cα(δmin))2 · σ̂2

1/N1 +∑
j(cα(δ0j)/cα(δmin))2 · f̂1(xj)2σ̂2

0(xj)/N0(xj)
σ̂2

1/N1 +∑
j f̂1(xj)2σ̂2

0(xj)/N0(xj)

1/2

,

and δ1 = N1 − 1. It then follows from arguments analogous to those used for IS,2 that

under Assumption 2 we have P (τS,T ∈ IS,2,T ) ≥ 1 − α in finite samples of any size. Other

robustness properties carry over analogously as well.

7. Empirical Illustration

To illustrate the methods proposed in this paper, we reanalyze observational data from a

well-known study by Connors et al. (1996) on the impact of right heart catheterization (RHC)

on patient mortality. RHC is a diagnostic procedure used for critically ill patients, in which a

thin tube is inserted into the right side of the heart to monitor its function. This information

is then used by critical care physicians to determine the further course of treatment. The

data used by Connors et al. (1996) contain information on 5735 patients. For each individual

we observe the treatment status, where treatment is defined as RHC being applied within

24 hours of admission, the outcome, which is an indicator for survival at 30 days, and 50

covariates considered by a panel of experts to be related to the decision to perform the RHC.

See Connors et al. (1996) for summary statistics and a more detailed description of the data.

Using a propensity score matching approach, they reached the controversial conclusions that

RHC causes a substantial increase in patient mortality.

For our analysis, we follow Hirano and Imbens (2001) and Crump et al. (2009) and first

estimate the propensity score using a logistic model that includes all the covariates. Figure 2

shows the distribution of estimated propensity scores by treatment group. In both groups,

the support of the estimated propensity scores is nearly the entire unit interval, and inference

is thus potentially affected by limited overlap. Next, we partition the unit interval as (0,.05],

(.05,.1],. . . ,(.95,1] into 20 cells, and discretize the estimated propensity score such that it
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Figure 2: Histogram of the estimated propensity score among treated individuals (left panel) and
untreated individuals (right panel).

takes the value j if the original estimate falls into the jth cell. We then estimate the SATE

adjusting for between-group differences in the discretized propensity score. After computing

the point estimate, we calculate both the classical CI IS,1 and our robust CI IS,2, with the

nominal level being set to the usual 95%.12

Table 1 reports our empirical results. The point estimate of the SATE of RHC on patient

mortality suggests an increase in the probability of death within 30 days of admission by

about 4 percentage points, with a standard error of about 2.5 percentage points. When

conducting inference on the SATE, our robust approach yields a critical value of 3.65, and

thus IS,2 is about 1.85 times wider than the standard CI IS,1 based on the usual critical

value 1.96. This discrepancy is mostly due to very small realized local sample sizes in two

of the 40 “propensity score-treatment” cells resulting from our chosen partition of the unit

interval. Both CIs contain the value of zero, suggesting that there is no strong evidence that
12We omit controlling for covariates within cells for simplicity, so the estimator corresponds to the one

described in Section 4 with K = 0. Note that since inference on the SATE is conditional on the value of the
covariates and the treatment indicator, no adjustments are necessary to account for the fact that an estimate
of the propensity score is being used here. This is because the estimated propensity score is non-random
given the original covariates and the treatment indicator. See Imbens (2015) for further details.
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Table 1: Sample Average Treatment Effect of Right Heart Catheterization
Estimation Results: Point Estimate 0.0398

Standard Error 0.0252
95% Critical Value: Standard 1.9600

Robust 3.6451
95% Confidence Interval: Standard [-0.0096, 0.0893]

Robust [-0.0521, 0.1318]

RHC increases mortality.

8. Conclusions

Limited overlap creates a number of challenges for empirical studies that wish to conduct

inference on the average effect of a treatment under the assumption of unconfounded as-

signment. This paper provides some new insights for why standard inference tends to be

distorted under limited overlap, and proposes a new robust CI that has good theoretical and

practical properties in empirically relevant settings. While formally derived in setting with

discrete covariates, our empirical illustration shows how robust inference can be conducted

in more general settings.

A. Proofs

A.1. Proof of Proposition 1. Put γd(x) = E((Y − µd(x))3|D = d,X = x) and κd(x) =

E((Y − µd(x))4|D = d,X = x)− 3 for all (d, x) ∈ {0, 1} ×X . We then show that part (i) of

the proposition holds with

q2(t, f, p) = t3 − 3t
6ω4

S

·
∑
d,j

f(xj)κd(xj)
pd(xj)3 − t5 + 2t3 − 3t

9ω6
S

·

∑
d,j

f(xj)γd(xj)(−1)1−d

pd(xj)2

2

− t

ω4
S

·
∑

(d,j)6=(d′,j′)

σ2
d(xj)σ2

d′(xj′)(f(xj)pd(xj) + f(xj′)pd′(xj′))
(pd(xj)pd′(xj′))2

− (t3 + 3t)
2ω4

S

·
∑
d,j

f(xj)σ4
d(xj)

pd(xj)3 ,

where ω2
S = ∑

d,j f(xj)σ2
d(xj)/pd(xj) is as defined in the main body of the text. This follows

from adapting a result of Hall and Martin (1988), who study the form of the Edgeworth
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expansion of the two-sample t-statistic; see also Hall (1992). One only requires the insight

that Hall and Martin’s (1988) arguments remain valid if the number of samples is increased

from 2 to 2J . Denoting the distribution function of TS,n given Mn by Hn(·|Mn), it follows

from their reasoning that under the conditions of the proposition Hn(·|Mn) satisfies the

following Edgeworth expansion:

Hn(t|Mn) = Φ(t) + n−1/2φ(t)q̂1(t) + n−1φ(t)q̂2(t) + n−3/2φ(t)q̂3(t) +OP (n−2),

where Φ and φ denote the standard normal distribution and density functions, respectively,

q̂1(t) = 2t2 + 1
6ω̄3

S

·
∑
d,j

f̂(xj)
p̂d(xj)2γd(xj),

q̂2(t) = t3 − 3t
12ω̄4

S

·
∑
d,j

f̂(xj)κd(xj)
p̂d(xj)3 − t5 + 2t3 − 3t

18ω̄6
S

·

∑
d,j

f̂(xj)γd(xj)(−1)1−d

p̂d(xj)2

2

− t

2ω̄4
S

·
∑

(d,j)6=(d′,j′)

σ2
d(xj)σ2

d′(xj′)(f̂(xj)p̂d(xj) + f̂(xj′)p̂d′(xj′))
(p̂d(xj)p̂d′(xj′))2

− (t3 + 3t)
4ω̄4

S

·
∑
d,j

f̂(xj)σ4
d(xj)

p̂d(xj)3 ,

ω̄2
S = ∑

d,j f̂(xj)σ2
d(xj)/p̂d(xj), and q̂3 is another even function whose exact form is not

important for the purpose of this argument. The conditional coverage probability of the CI

IS,n given Mn is given by

P (τS ∈ IS,n|Mn) = P (TS,n ≤ zα|Mn)− P (TS,n ≤ −zα|Mn) = Hn(zα|Mn)−Hn(−zα|Mn).

Substituting the Edgeworth expansion for Hn(·|Mn) into this expression, we find that

P (τS ∈ IS,n|Mn) = 1− α + n−1φ(zα)q̂2(zα) +O
(
n−2

)
,

The result of Proposition 1(i) then follows from the fact that E(q̂2(zα)) = q2(zα) + O(n−1),

the relationship that P (τS ∈ IS,n) = E(P (τS ∈ IS,n|Mn)), and dominated convergence. The

second part of the proposition follows from some simple algebra.
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A.2. Proof of Proposition 2. To show part (i) we first prove the following auxiliary result,

which is similar to a statement in Hayter (2014).

Lemma 1. Let X be a standard normal random variable, and let W = (a1W1, . . . , aKWK)′

be a random vector with ak a positive constant and Wk a random variable following a χ2-

distribution with sk degrees of freedom for k = 1, . . . , K, and such that X and the components

of W are mutually independent. Also define the set Γ = {(γ1, . . . , γK) : γk ≥ 0 for k =

1, . . . , K and ∑K
k=1 γk ≤ 1} with typical element γ, and let Vγ = X/(W ′γ)1/2. Then for all

γ ∈ Γ and u > 0 it holds that

P (Vγ ≤ u) ≥ min
k=1,...,K

Ft(u/a1/2
k , sk).

Proof. With Φ the CDF of the standard normal distribution and u > 0, the function Φ(ut1/2)

is strictly concave in t for t ≥ 0, as it is the combination of a strictly concave function and

a strictly increasing function. Therefore it holds that

P (Vγ ≤ u|W ) = P (X ≤ u(W ′γ)1/2|W ) = Φ(u(W ′γ)1/2)

is a strictly concave function in γ for γ ∈ Γ with probability one, and consequently

P (Vγ ≤ u) = E(Φ(u(W ′γ)1/2))

is strictly concave in γ for γ ∈ Γ. Since P (Vγ ≤ u) is also continuous in γ, and Γ is a convex

compact set, the term P (Vγ ≤ u) attains a minimum in γ on the boundary of Γ. It remains

to be shown that the minimum occurs for γ = ek for some k, where ek denotes the K-vector

whose kth entry is 1 and whose other entries are all 0. We prove this by induction. For

K = 1 and K = 2 this is trivial, as the boundary of Γ only contains elements of the required

form in those cases. For K = 3, the boundary of Γ is a triangle. If the minimum occurs on

the side given by {(0, γ2, γ3) : γ2, γ3 ≥ 0, γ2 + γ3 = 1}, it follows from the case K = 2 that
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the minimum occurs for γ = e2 or γ = e3. By repeating this argument for the other sides of

the triangle, it follows that the minimum must occur at γ = ek for some k = 1, 2, 3, which

is what we needed to show. We then continue analogously for the cases K = 4, 5, . . ., by

always “going through” all (K−1)-dimensional “sides” of theK-dimensional simplex Γ. Since

P (Vek
≤ u) = Ft(u/a1/2

k , sk), it then follows that P (Vek
≤ u) ≥ mink=1,...,K Ft(u/a1/2

k , sk).

This completes the proof.

The statement of part (i) of the proposition then follows from applying the Lemma to the

conditional distribution of TS,n(h∗) given Mn, by putting (with a slight abuse of notation)

X =
√
n(τ̂ − τS)/

∑
d,j

cα(δdj)2f̂(xj)2σ2
d(xj)/Nd(xj)


γk = (f̂(xj)2σ2

d(xj)/Nd(xj))/
∑
d,j

f̂(xj)2σ2
d(xj)/Nd(xj)


Wk = σ̂2

d(xj)/σ2
d(xj), sk = Nd(xj)− 1, and ak = cα(δdj)2,

and by noting that since the inequality holds conditional on Mn it must also hold uncon-

ditionally. Part (ii) follows from the fact that cα(δ) = zα + O(δ−1), which implies that

cα(δmin) = zα +O(n−1), and that ρα = 1 +O(n−1).

A.3. Proof of Corollary 1. The proof is analogous to that of Proposition 1, using standard

results for homoskedastic linear models with normal errors.
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