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Abstract

We analyze the statistical properties of nonparametric regression estimators

using covariates which are not directly observable, but have be estimated from

data in a preliminary step. While these so-called generated covariates appear in

numerous applications, including two-stage nonparametric regression, estimation of

simultaneous equation models or censored regression models, so far there seems to

be no general theory for their impact on the final estimator’s statistical properties.

Our paper provides such results, deriving a stochastic expansion to characterize

the influence of the generation step on the estimator. We employ this expansion to

derive rates of consistency and asymptotic distributions accounting for the presence

of generated covariates.
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1. Introduction

A wide range of statistical applications requires nonparametric estimation of a regression

function when some of the covariates are not directly observed, but have themselves

only been estimated in a (possibly nonparametric) preliminary step. Examples include

triangular simultaneous equation models (e.g. Newey, Powell, and Vella, 1999; Blundell

and Powell, 2004; Imbens and Newey, 2009), sample selection models (Das, Newey, and

Vella, 2003), treatment effect models (Heckman, Ichimura, and Todd, 1998; Heckman

and Vytlacil, 2005), censored regression models (Linton and Lewbel, 2002), generalized

Roy models (d’Haultfoeuille and Maurel, 2009), stochastic volatility models (Kanaya and

Kristensen, 2009), and GARCH-in-Mean models (Conrad and Mammen, 2009), amongst

many others. In contrast to fully parametric settings (Pagan, 1984), there seem to exist

no general results on how to derive statistical properties of such nonparametric two-step

estimators. Instead, most available results in the literature typically exploit peculiarities

of a specific model, and can thus not easily be transferred to other applications.

In this paper, we study the statistical properties of a nonparametric estimator m̂LL of

a conditional mean function m0(x) = E(Y |r0(S) = x) when the function r0 is unknown,

but can be estimated from data. While we are specific about estimating m0 by local linear

regression (Fan and Gijbels, 1996) to simplify technical arguments, we neither require the

generated regressors R̂ = r̂(S) to emerge from a specific type of model, nor do we require

a specific procedure to estimate them. We only impose high-level conditions on the

accuracy and complexity of the first step estimate. In particular, our main result holds

irrespectively of whether the function r0 is e.g. a density, a conditional mean function, or

a quantile regression function, or whether it is estimated by kernel methods, orthogonal

series or sieves. Moreover, our results also apply in settings where r0 is estimated using

parametric or semiparametric restrictions.

Our main result, shown using techniques from empirical process theory, is that the

presence of generated covariates affects the first-order asymptotic properties of m̂LL only

through a smoothed version of the estimation error r̂(s)−r0(s). This additional smoothing

typically improves the rate of convergence of the estimator’s stochastic part, reducing the

“curse of dimensionality” from estimating r0 to a secondary concern in this context. It
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does however not affect the order of magnitude of the deterministic component. Still, the

estimator m̂LL can have a faster rate of convergence than the first step estimator r̂ if the

latter has a sufficiently small bias.

The paper extensively illustrates the implications of our main result for the important

special case that r0 is the conditional mean function in an auxiliary nonparametric regres-

sion. For this setting, we derive simple and explicit stochastic expansions that can not

only be used to establish asymptotic normality or the rate of consistency of the estimated

regression function itself, but also to study the properties of more complex estimators, in

which estimation of a regression function merely constitutes an intermediate step, such

as structured nonparametric models imposing additive separability (Stone, 1985). Our

results thus cover a wide range of models, and should therefore be of general interest.

We also use these techniques to study two examples in greater detail: nonparametric

estimation of a simultaneous equation model and nonparametric estimation of a censored

regression model.

To the best of our knowledge, there are only few papers on nonparametric regression

with estimated covariates not tailored to a specific application. Andrews (1995) derives

some results for generated covariates converging at a parametric rate. Sperlich (2009) uses

restrictive assumptions which lead to asymptotic results that are different from the ones

obtained in the present paper. Song (2008) considers series estimation of the functional

g(x, r) = E(Y |r(X) = x) indexed by x ∈ X ⊂ R and r ∈ Λ, where Λ is a function

space with finite integral bracketing entropy, and derives a rate of consistency uniformly

over (x, r) ∈ X × Λ (see also Einmahl and Mason (2000) for a related problem). Our

paper is also related to a recent literature on semiparametric estimation problems with

generated covariates. Li and Wooldridge (2002) consider a partial linear model with

generated covariates. Hahn and Ridder (2011) use pathwise derivatives to derive the

influence function of semiparametric linear GMM-type estimators. Escanciano, Jacho-

Chávez, and Lewbel (2011) provide stochastic expansions for sample means of weighted

semiparametric regression residuals with potentially generated regressors, and study their

application to certain index models. A general treatment of semiparametric applications

would require substantial refinements of the results given in this paper, which are not

needed for the class of nonparametric problems we are focusing on. In particular, different
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techniques are needed to control the magnitude of certain remainder terms. To keep

the present paper more readable, we study semiparametric estimators with generated

covariates separately in Mammen, Rothe, and Schienle (2011).

The outline of this paper is as follows. In the next section, we describe our setup in

detail and give some motivating examples. Section 3 establishes the asymptotic theory

and states the main results. In Section 4, we apply our results to examples given in

Section 2, thus illustrating their application in practice. Finally, Section 5 concludes. All

proofs are collected in the Appendix.

2. Nonparametric Regression with Generated Covariates

2.1. Model and Estimation Procedure. The nonparametric regression model with

generated regressors can be written as

Y = m0(r0(S)) + ε with E(ε|r0(S)) = 0, (2.1)

where Y is the dependent variable, S is a p-dimensional vector of covariates, m0 : Rd → R

and r0 : Rp → Rd are unknown functions, and ε is an error term that has mean zero

conditional on the true value of covariates to covariates r0(S).1 We assume that there is

additional information available outside of the basic model (2.1) such that the function

r0 is identified. For example, r0 could be (some known transformation of) the mean

function in an auxiliary nonparametric regression, which might involve another random

vector, say T , in addition to Y and S.

Our aim is to estimate the function m0(x) = E(Y |r0(S) = x). Since r0 is unobserved,

obtaining a direct estimator based on a nonparametric regression of Y on R = r0(S) is

clearly not feasible. We therefore consider the following two-stage procedure. In the first

stage, an estimate r̂ of r0 is obtained. We do not prescribe a specific estimator for this

step. Instead, we only impose the high-level restrictions that the estimator r̂ is uniformly

consistent, converging at a rate specified below, and takes on values in a function class

that is not too complex. Depending on the nature of the function r0, these kind of regular-

1Note that in contrast to an earlier working paper version of this paper, we do no longer assume that

the “index” r0(S) is a sufficient statistic for the covariates S, which would imply that E(Y |r0(S)) =

E(Y |S).
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ity conditions are typically satisfied by various common nonparametric estimators, such

as kernel-based procedures or series estimators, under suitable smoothness restrictions.

In the second step, we then obtain our estimate m̂LL of m0 through a nonparametric

regression of Y on the generated covariates R̂ = r̂(S), using local linear smoothing. That

is, our estimator is given by m̂LL(x) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

(Yi − α− βT (R̂i − x))2Kh(R̂i − x),

with Kh(u) =
∏d

j=1K(uj/hj)/hj a d-dimensional product kernel built from the univariate

kernel function K, and h = (h1, ..., hd) a vector of bandwidths that tend to zero as the

sample size n tends to infinity.

For the later asymptotic analysis, it will also be useful to compare m̂LL to an infeasible

estimator m̃LL that uses the true function r0 instead of an estimate r̂. Such an estimator

can be obtained by local linear smoothing of Y versus R = r0(S), i.e. it is given by

m̃LL(x) = α̃, where

(α̃, β̃) = argmin
α,β

n∑
i=1

(Yi − α− βT (Ri − x))2Kh(Ri − x).

In order to distinguish these two estimators, we refer to m̂LL in the following as the real

estimator, and to m̃LL as the oracle estimator.

Our use of local linear estimators in this paper is based on the following considerations.

First, in a classical setting with fully observed covariates, estimators based on local linear

regression are known to have attractive properties with regard to boundary bias and

design adaptivity (see Fan and Gijbels (1996) for an extensive discussion), and they

allow a complete asymptotic description of their distributional properties. In the present

setting with generated covariates, these properties simplify the asymptotic treatment.

The design adaptivity leads to a discussion of bias terms that do not require regular

densities for the randomly perturbed covariates, and the complete asymptotic theory

allows a clear description of how the final estimator is affected by the estimation of the

covariates. On the other hand, our assumptions on the estimation of the covariates are

rather general and can be verified for a broad class of smoothing methods, including

sieves and orthogonal series estimators.

5



2.2. Motivating Examples. There are many statistical applications which involve

nonparametric estimation of a regression function using nonparametrically generated co-

variates. In this section, we give an overview of some of the most popular examples and

explain how they fit into our framework. In Section 4, we revisit the first three of these

examples, studying their asymptotic properties in detail. A thorough treatment of the

remaining examples involves several technical issues beyond dealing with the presence of

estimated covariates, such as boundary problems, and is thus omitted for brevity. See

also Mammen, Rothe, and Schienle (2011) for an extensive discussion of semiparametric

problems with generated covariates.

2.2.1. The Generic Example: Nonparametric Two-Stage Regression. In many applica-

tions, the unknown function r0 is a conditional expectation function from an auxiliary

nonparametric regression. As a first motivating example, we therefore consider a “two-

stage” nonparametric regression model given by

Y = m0(r0(S)) + ε,

T = r0(S) + ζ,

where ζ is an unobserved error term that satisfies E[ζ|S] = E[ε|r0(S)] = 0. As the

structure of this example is particularly simple, it is used extensively in Section 4 below

to illustrate the application of our main result. Proceeding like this is instructive, as the

types of technical difficulties encountered in this example are representative for those in

a wide range of other statistical applications.

2.2.2. Nonparametric Censored Regression. Consider a nonparametric regression model

with fixed censoring, i.e.

Y = max(0, µ0(X)− U), (2.2)

where U is an unobserved mean zero error term that is assumed to be independent of the

covariates X. Fixed censoring is a common phenomenon in many applications, e.g. the

analysis of wage data. Note that the censoring threshold could be different from zero, as

long as it is known. Linton and Lewbel (2002) establish identification of the function µ0
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under the tail condition limu→−∞ uFU(u) = 0 on the distribution function FU of U . In

particular, they show that the function µ0 can be written as

µ0(x) = λ0 −
∫ λ0

r0(x)

1

q0(r)
dr, (2.3)

where r0(x) = E(Y |X = x), q0(r) = E(I{Y > 0}|r0(X) = r), and λ0 is some suitably

chosen constant. An estimate of the function µ0 can then be obtained from a sample

analogue of (2.3), i.e. through numerical integration of a nonparametric estimate of the

function q0(r)−1. Nonparametric estimation of q0 involves nonparametrically generated

regressors, and thus fits into our framework with (Y, S) = (I{Y > 0}, X) and r0(S) =

r0(X).

2.2.3. Nonparametric Triangular Simultaneous Equation Models. Covariates that are

correlated with disturbance terms appear in many economic models and are denoted as

endogenous. When e.g. analyzing the relationship between wages and schooling, unob-

served individual characteristics like ability or motivation might affect both the outcome

and the explanatory variable. A common approach is to model these quantities jointly,

achieving identification by using so-called instrumental variables, that are independent of

unobservables, affect the endogenous variable, but exert no direct influence on the out-

come. Consider for example the nonparametric simultaneous equation model discussed

in Newey, Powell, and Vella (1999), which is of the form

Y = µ1(X1, Z1) + U (2.4)

X1 = µ2(Z1, Z2) + V. (2.5)

Here the interest is in estimating the function µ1. To achieve identification, one imposes

the restrictions E(V |Z1, Z2) = 0, E(U) = 0 and E(U |Z1, Z2, V ) = E(U |V ), which follow

e.g. if the vector of exogenous covariates and instruments Z = (Z1, Z2) is jointly indepen-

dent of the disturbances (U, V ). Now let m(x1, z1, v) = E(Y |X1 = x1, Z1 = z1, V = v).

Under the above assumptions, it is straightforward to show that

m(x1, z1, v) = µ1(x1, z1) + λ(v)

where λ(v) = E(U |V = v). The first component of this additive model could e.g. be

estimated by marginal integration (Newey, 1994a; Linton and Nielsen, 1995), which relies
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on the fact that ∫
m(x1, z1, v)fV (v)dv = µ1(x1, z1), (2.6)

where fV is the probability density function of V . Implementing a sample version of (2.6)

requires estimating the function m. Since the residuals V are not directly observed but

must be estimated by some nonparametric method, this fits into our framework with

(Y, S) = (Y, (X1, Z1, Z2), X1) and r0(S) = (X1, Z1, X1 − µ2(Z1, Z2))

Remark 1. An alternative to marginal integration would be an approach based on

smooth backfitting (Mammen, Linton, and Nielsen, 1999). Smooth backfitting estima-

tors avoid several problems encountered by marginal integration in case of covariates with

moderate or high dimension, but involves a more involved statistical analysis which is

beyond the scope of the present paper. We are going to study smooth backfitting with

nonparametrically generated covariates in a separate paper.

2.2.4. Generalized Roy Model. D’Hautfoeuille and Maurel (2009) consider a generalized

Roy model of occupational choice, that is related to the previous example in the sense

that it also leads to an additive regression model. Let Yk denote the individual’s potential

earnings in sector k ∈ {0, 1} of an economy, X = (X0, X1, Xc) a vector of covariates,

and assume that E(Yk|X, η1, η2) = ψk(Xk, Xc) + ηk, where (η0, η1) are sector-specific

productivity terms known by the agent but unobserved by the analyst. Expected utility

from working in sector k is assumed to be Uk = E(Yk|X, η1, η2) + Gk(X), the sum of

sector-specific expected earnings and a non-pecuniary component that depends on X.

Along with X, the analyst observes the chosen sector D, which satisfies D = I{U1 > U0},

and the realized earnings Y = DY1 + (1−D)Y0.

One object of interest in this context is the pair of functions (ψ1, ψ0). Under some

weak additional conditions, d’Haultfoeuille and Maurel (2009) show that

E(Y |D = d,X) = ψd(Xd, Xc) + λd(Pr(D = d|X))

for d ∈ {0, 1}, which is again an additive model involving unobserved covariates, namely

the conditional probabilities Pr(D = d|X) of choosing sector d. This setting fits into our

framework in the same way as the previous example.
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2.2.5. Nonparametric Triangular Simultaneous Equation Models with Nonseparable Er-

rors. Imbens and Newey (2009) consider a generalized version of the above simultaneous

equation model with non-additive disturbances:

Y = µ1(X1, Z1, U) (2.7)

X1 = µ2(Z1, Z2, V ), (2.8)

Nonseparable models have become popular in the recent econometric literature, as they

allow for substantially more general forms of unobserved heterogeneity than specifications

in which the disturbance terms enter additively. The focus here is typically on averages

of the function µ1, such as the Average Structural Function

ASF (x1, z1) = EU(µ1(x1, z1, U)).

To achieve identification, assume that the function µ2 is strictly monotone in its last ar-

gument, that V is continuously distributed, and that the unobserved disturbances (U, V )

are jointly independent of Z. Then it can be shown that U and (X1, Z1) are independent

conditional on the so-called control variable W = FX1|Z(X1, Z), where FX1|Z denotes the

distribution function of X1 given Z. Under an additional support condition, this result

implies that the ASF is identified through the relationship

ASF (x1, z1) =

∫
m(x1, z1, w)dFW , (2.9)

where m(x1, z1, w) = E(Y |X1 = x1, Z1 = z1,W = w). Since the control variable W

is unobserved and has to be estimated in order to implement a sample analogue es-

timator of (2.9), this setting also fits into the framework of this paper. In particu-

lar, nonparametric estimation of m is covered with (Y, S) = (Y, (X1, Z1, Z2), X1) and

r0(S) = (X1, Z1, FX1|Z(X1, Z)).

3. Asymptotic Properties

It is straightforward to show that m̂LL consistently estimates the function m0 under

standard conditions. Obtaining refined asymptotic properties, however, requires more

involved arguments. In this section, we derive a stochastic expansion of the difference

between the real and the oracle estimator, in which the leading term is a kernel-weighted
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average of the first stage estimation error. This is our main result. It can be used e.g.

to obtain uniform rates of consistency for the real estimator, or to prove its asymptotic

normality. We demonstrate this in the next section for specific forms of r0 and r̂.

Throughout this section, we use the notation that for any vector a ∈ Rd the value

amin = min1≤j≤d aj denotes the smallest of its elements, a+ =
∑d

j=1 aj denotes the sum of

its elements, a−k = (a1, . . . , ak−1, ak+1, . . . , ad) denotes the d−1-dimensional subvector of

a with the kth element removed, and ab = (ab11 , . . . , a
bd
d ) for any vector b ∈ Rd. For ease

of presentation in the following, we avoid logarithmic terms in rates of convergence, i.e.,

we state assumptions and results in the form oP (nξ) instead of OP (log nγ) with ξ, γ > 0.

3.1. Assumptions. In order to analyze the asymptotic properties of the local linear

estimator with nonparametrically generated regressors, we make the following assump-

tions.

Assumption 1 (Regularity Conditions). We assume the following properties for the data

distribution, the bandwidth, and kernel function K.

(i) The sample observations (Yi, Si) are i.i.d.

(ii) The random vector R = r0(S) is continuously distributed with compact support IR.

Its density function fR is twice continuously differentiable and bounded away from

zero on IR.

(iii) The function m0 is twice continuously differentiable on IR.

(iv) E[exp(l|ε|)|S] ≤ C almost surely for a constant C > 0 and l > 0 small enough.

(v) The kernel function K is a twice continuously differentiable, symmetric density func-

tion with compact support, say [−1, 1].

(vi) The bandwidths h = (h1, . . . , hd) satisfies hj ∼ n−ηj for j = 1, . . . , d and η+ < 1.

Most conditions in Assumption 1 are standard regularity and smoothness conditions

for kernel-type nonparametric regression, with the exception of Assumption 1 (iv). The

subexponential tails of ε conditional on S assumed there are needed to apply certain
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results from empirical process theory in our proofs. Such a condition is not very restrictive

though.

Assumption 2 (Accuracy). The components r̂j and r0,j of r̂ and r0, respectively, satisfy

sup
s
|r̂j(s)− r0,j(s)| = oP (n−δj)

for some δj > ηj and all j = 1, . . . , d.

Assumption 2 is a ”high-level” restriction on the accuracy of the estimator r̂. It

requires each component of the estimate of the function r0 to be uniformly consistent,

converging at rate at least as fast as the corresponding bandwidth in the second stage

of the estimation procedure. This is typically not a restrictive condition, and it allows

for estimators r̂ that converge at a rate slower than the oracle estimator m̃LL. Uniform

rates of consistency are widely available for all common nonparametric estimators. See

e.g. Masry (1996) for results on the Nadaraya-Watson, local linear and local polynomial

estimators, or Newey (1997) for series estimators.

Assumption 3 (Complexity). There exist sequences of sets Mn,j such that

(i) Pr(r̂j ∈Mn,j)→ 1 as n→∞ for all j = 1, . . . , d.

(ii) For a constant CM > 0 and a function rn,j with ‖rn,j − r0,j‖∞ = o(n−δj), the set

Mn,j =Mn,j∩{rj : ‖rj−rn,j‖∞ ≤ n−δj} can be covered by at most CM exp(λ−αjnξj)

balls with ‖ · ‖∞-radius λ for all λ ≤ n−δj , where 0 < αj ≤ 2, ξj ∈ R and ‖ · ‖∞
denotes the supremum norm.

Assumption 3 requires the first-stage estimator r̂ to take values in a function space

Mn,j that is not too complex, with probability approaching 1. Here the complexity

of the function space is measured by the cardinality of the covering sets. This is a

typical requirement for many results from empirical process theory (see Van der Vaart

and Wellner, 1996). The second part of Assumption 3 is typically fulfilled under suitable

smoothness restrictions. For example, suppose thatMn,j is the set of functions defined on

some compact set IS ⊂ Rp whose partial derivatives up to order k exist and are uniformly

bounded by some multiple of nξ
∗
j for some ξ∗j ≥ 0. Then Assumption 3(ii) holds with αj =

p/k and ξj = ξ∗jαj (Van der Vaart and Wellner, 1996, Corollary 2.7.2). For kernel-based
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estimators of r0, one can then verify part (i) of Assumption 3 by explicitly calculating

the derivatives. Consider e.g. the one-dimensional Nadaraya-Watson estimator r̂n,j with

bandwidth of order n−1/5. Choose rn,j equal to r0,j plus asymptotic bias term. Then one

can check that the second derivative of r̂n,j− rn,j is absolutely bounded by OP (
√

log n) =

oP (nξ
∗
j ) for all ξ∗j > 0. For sieve and orthogonal series estimators, Assumption 3(i)

immediately holds when the setMn,j is chosen as the sieve set or as a subset of the linear

span of an increasing number of basis functions, respectively. For a discussion of entropy

bounds and further references we refer to van de Geer (2000).

Assumption 4 (Continuity). For any r ∈ Mn = Mn,1 × . . . ×Mn,d the conditional

expectation τB(x, r) = E(ρ(S)|r(S) = x) with ρ(S) = E(Y |S)− E(Y |r0(S)) exists and is

twice differentiable with respect to its first argument, with derivatives that are uniformly

bounded in absolute value, and satisfies

‖τB(x, r1)− τB(x, r2)‖ ≤ C∗B‖r1 − r2‖∞ a.s.

for all r1, r2 ∈Mn and a constant C∗B > 0.

Assumption 4 imposes certain smoothness restrictions on the conditional expectation

of ρ(S). The term ρ(S) can be thought of as capturing the influence of the underlying

covariates S on the outcome variable Y that is not excreted through the “index” r0(S).

In certain applications, the “index” r0(S) is a sufficient statistic for the function m0, and

thus ρ(S) = 0 with probability 1. In this case Assumption 4 is trivially satisfied. Note

that ρ(S) = E(ε|S), and that τB(·, r0) ≡ 0 by construction.

3.2. The Key Stochastic Expansion. With the assumptions given in the previous

section, we are now ready to state our main result, which is a stochastic expansion of

the real estimator m̂LL(x) around the oracle estimator m̃LL(x). Our aim is to derive

an explicit characterization of the influence of the presence of generated regressors on

the final estimator of the function m0. To this end, we define w(x, r) = (1, (r1(S) −

x1)/h1, . . . , (rd(S)− xd)/hd), and set Nh(x) = E(w(x, r)w(x, r)TKh(r(S)− x)). Next, we

define

∆(x, r) = e>1 Nh(x)−1E(Kh(r0(S)− x)w(x, r)(r(S)− r0(S))),

Γ(x, r) = e>1 Nh(x)−1E(K ′h(r0(S)− x)>w(x, r)(r(S)− r0(S))ρ(S)),
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for any r ∈ Mn, where K ′h(u) = (K′h,j(u) : j = 1, . . . , d)T with elements K′h,j(u) =

K′(uj/hj)/h2
j

∏
j∗ 6=j K(uj∗/hj∗)/hj∗ . Finally, we put ∆̂(x) = ∆(x, r̂) and Γ̂(x) = Γ(x, ,̂r).

With this notation, we can now state our main theorem.

Theorem 1. Suppose Assumptions 1–4 hold. Then

sup
x∈IR

∣∣∣m̂LL(x)− m̃LL(x) +m′0(x)∆̂(x)− Γ̂(x)
∣∣∣ = OP (n−κ)

where κ = min{κ1, ..., κ3} with

κ1 <
1

2
(1− η+) + (δ − η)min −

1

2
max
1≤j≤d

(δjαj + ξj), κ2 < 2ηmin + (δ − η)min,

κ3 < δmin + (δ − η)min.

The two leading terms in our stochastic expansion of the real estimator m̂LL(x) around

the oracle estimator m̃LL(x), which are accounting for the presence of generated covari-

ates, are both smoothed versions of the first-stage estimation error r̂(s) − r0(s). To see

this more clearly, note that

∆(x, r) =
E(Kh(r0(S)− x)(r(S)− r0(S)))

fR(x)
+OP (n−κ) and

Γ(x, r) =
E(K ′h(r0(S)− x)>(r(S)− r0(S))ρ(Si))

fR(x)
+OP (n−κ).

uniformly over x ∈ I−R,n = {x ∈ IR : the support of Kh(· − x) is a subset of IR}. In order

to achieve a certain rate of convergence for the real estimator it is thus not necessary

to have an estimator of r0 that converges with the same rate or a faster one, since the

asymptotic properties of the estimator using nonparametrically generated regressors only

depend on a smoothed version of the first-stage estimation error. While smoothing does

not affect the order of the estimator’s deterministic part, it typically reduces the variance

and thus allows for less precise first-stage estimators. Note that the first adjustment term

is negligible in regions where the regression function is flat, since m′0(x) = 0 in this case.

Conversely, the impact of generated covariates is accentuated when the true regression

function is steep. Also note that Γ̂(x) = 0 when E(ε|S) = 0, as the latter implies that

ρ(s) ≡ 0. This is a natural condition in certain empirical applications.

Remark 2. In Theorem 1 no assumptions are made about the process generating the

data for estimation of r0. In particular, nothing is assumed about dependencies between
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the errors in the pilot estimation and the regression errors εi. We conjecture that better

rates than n−κ can be proven under such additional assumptions, but the results would

only be specific to the respective full model under consideration. One way to extend our

approach to such a setting would be to use our empirical process methods to bound the

remainder term of higher order differences between m̂ and m̃, and to treat the leading

terms of the resulting higher order expansion by other, more direct methods.

4. Examples Revisited

In this section, we apply our high-level results from Section 3 to some of the motivating

examples presented in Section 2, which are representative for the others in terms of

techniques employed. Assuming a specific nature of the function r0 and a specific method

to estimate it, explicit forms of the adjustment terms ∆̂(x) and Γ̂(x) in Theorem 1 can

be derived in order to account for the presence of generated covariates. Our focus in this

section is on the practically most important case that r0 is the conditional mean function

in an auxiliary nonparametric regression. Many other applications can be treated along

the same lines.

4.1. Generic Example: Two-Stage Nonparametric Regression. The main set-

ting in which we illustrate the application of the stochastic expansion from Theorem 1 is

the “two-stage” nonparametric regression model given by

Y = m0(r0(S)) + ε,

T = r0(S) + ζ,

where ζ is an unobserved error term that satisfies E[ζ|S] = E[ε|r0(S)] = 0. For simplicity,

we focus on the case that R = r0(S) is a one-dimensional covariate, but generalizations

to multiple generated covariates or the presence of additional observed covariates are

immediate.

Our strategy for deriving asymptotic properties of m̂LL in this framework is to first

provide an explicit representation for the adjustment terms ∆̂(x) and Γ̂(x) from Theorem

1, which are then combined with standard results about the oracle estimator m̃LL. For

this approach it is convenient to use a kernel-based smoother to estimate r0. Since the
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bias of both ∆̂(x) and Γ̂(x) is of the same order as of this first-stage estimator, we propose

to estimate the function r0 via q-th order local polynomial smoothing, which includes the

local linear estimator as the special case q = 1. Formally, the estimator is given by

r̂(s) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

Ti − α− ∑
1≤u+≤q

βTr (Si − s)u
2

Lg(Si − s) (4.1)

and Lg(s) =
∏p

j=1 L(sj/g)/g is a p-dimensional product kernel built from the univariate

kernel L, g is a vector of bandwidths, whose components are assumed to be the same for

simplicity, and
∑

1≤u+≤q denotes the summation over all u = (u1, . . . , up) with 1 ≤ u+ ≤ q.

When r0 is sufficiently smooth, the asymptotic bias of local polynomial estimators of

order q is well-known to be O(gq+1) uniformly over x ∈ IR (if q is uneven), and can

thus be controlled. A further technical advantage of using local polynomials is that the

corresponding estimator admits a certain stochastic expansion under general conditions,

which is useful for our proofs. We make the following assumption, which is essentially

analogous to Assumption 1 except for Assumption 4(iii). This additional assumption

requires higher order smoothness of the kernel, necessary to bound the k-th derivative of

the estimator r̂. This allows to verify the Complexity Assumption 3 for r̂.

Assumption 5. We assume the following properties for the data distribution, the band-

width, and kernel function L.

(i) The observations (Si, Yi, Ti) are i.i.d. and the random vector S is continuously dis-

tributed with compact support IS. Its density function fS is bounded and bounded

away from zero on IS. It is also differentiable with a bounded derivative. The

residuals ζ satisfy E|ζ|ε <∞ for some ε > 2.

(ii) The function r0 is q + 1 times continuously differentiable on IS.

(iii) The kernel function L is a k-times continuously differentiable, symmetric den-

sity function with compact support, say [−1, 1], for some natural number k ≥

max{2, p/2}.

(iv) The bandwidth satisfies g ∼ n−θ for some 0 < θ < 1/p.
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To simplify the presentation, we also assume that the function r0(s) is strictly mono-

tone in at least one of its arguments, which can be taken to be the last one without loss of

generality. This assumption could be easily removed at the cost of a substantially more

involved notation in the following results.

Assumption 6. The function r0(u−p, up) is strictly monotone in up, and r0(u−p, ϕ(u−p, x)) =

x for some twice continuously differentiable function ϕ.

The following proposition shows that in the present context the function ∆̂(x) can

be written as the sum of a smoothed version of the first stage estimator’s bias function,

a kernel-weighted average of the first-stage residuals ζ1, . . . , ζn, and some higher order

remainder terms. For a concise presentation of the result we introduce some particular

kernel functions. Let L∗ denote the p-dimensional equivalent kernel of the local polyno-

mial regression estimator, given in (A.27) in the Appendix, and define the one-dimensional

kernel functions

Jh(x, s) =

∫
Kh (r0(s)− x− ∂sr0(s)uh)L∗(u)du,

H∆
g (x, v) =

∂xϕ(v−p, x)

g

∫
L∗
(
s−p,

ϕ(v−p, x)− vp
g

+ sp∂−pϕ(v−p, x)

)
ds

Then, with this notation, we obtain the following Proposition.

Proposition 1. Suppose that Assumptions 1 and 4–6 hold. Then we have for the cor-

rection factor ∆̂ in Theorem 1 that

sup
x∈IR
|∆̂(x)− ∆̂A(x)− ∆̂B(x)| = Op

(
log(n)

ngp

)
,

where the terms ∆̂A(x) and ∆̂B(x) satisfy

sup
x∈IR
|∆̂A(x)| = Op((log(n)/(nmax{g, h}))1/2) and sup

x∈IR
|∆̂B(x)| = Op(g

q+1).

Moreover, uniformly over x ∈ I−R,n, it is ∆̂B(x) = gq+1E[b(S)|r0(S) = x] + op(g
q+1) with

a bounded function b(s) given in (A.25) in the Appendix, and the term ∆̂A(x) allows for

the following expansions uniformly over x ∈ I−R,n, depending on the limit of g/h:

a) If g/h→ 0 then

∆̂A(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)ζi +Op

((
g2

h2
+
g3/2

h

)(
log(n)

nh

)1/2
)
.
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b) If h = g then

∆̂A(x) =
1

nfR(x)

n∑
i=1

Jh(x, Si)ζi +Op

((
log(n)

n

)1/2
)
.

c) If g/h→∞ then

∆̂A(x) =
1

nfR(x)

n∑
i=1

H∆
g (x, Si)ζi +Op

(
g2

h2

(
log(n)

ng

)1/2

+

(
log(n)

n

)1/2
)
.

It should be emphasized that in all three cases of the above proposition the leading

term in the expression for ∆̂A(x) is equal to an average of the error terms ζi weighted

by a one-dimensional kernel function, irrespective of p = dim(S). The dimension of the

covariates thus affects the properties of ∆̂(x) only through higher-order terms. Further-

more, it should be noted that one can also derive expressions of ∆̂(x) similar to the ones

above for values of x close to the boundary of the support. Likewise these take the form

of a one-dimensional kernel weighted average of the error terms ζi plus a higher-order

term. The corresponding kernel function, however, has a more complicated closed form

varying with the point of evaluation.

The following proposition establishes a result similar to Proposition 1 for the second

adjustment term Γ̂(x). We again introduce a particular one-dimensional kernel function,

defined as

HΓ
g (x, v) =

∫
g−1L∗

(
s−p,

ϕ(v−p, x)− vp
g

+ sp∂pϕ(v−p, x)

)
dsλ(v−p, x)

with

λ(v−p, x) =
∂vp(ρ(v−p, ϕ(v−p, x)fS(v−p, ϕ(v−p, x)) det(∂v−pϕ(v−p, x))

fS(v−p, ϕ(v−p, x))∂vpr0(v−p, ϕ(v−p, x))

where L∗ still denotes the p-dimensional equivalent kernel of the local polynomial regres-

sion estimator, given in (A.27) in the Appendix.

Proposition 2. Suppose that Assumptions 1 and 4–6 hold. Then we have that

sup
x∈IR
|Γ̂(x)− Γ̂A(x)− Γ̂B(x)| = Op

(
log(n)

ngp

)
,

where the terms Γ̂A(x) and Γ̂B(x) satisfy

sup
x∈IR
|Γ̂A(x)| = Op((log(n)/(ng))1/2) and sup

x∈IR
|Γ̂B(x)| = Op(g

q+1)
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Moreover, uniformly over x ∈ I−R,n, it is Γ̂B(x) = gq+1∂xE[b(S)ρ(S)|r0(S) = x] + op(g
q+1)

with a bounded function b(s) given in (A.25) in the Appendix, and the term Γ̂A(x) allows

for the following expansions uniformly over x ∈ I−R,n:

Γ̂(x) =
1

nfR(x)

n∑
i=1

HΓ
g (x, Si)ζi + oP

(√
log(n)

ng

)
. (4.2)

Again, the leading term in the expression for Γ̂A(x) is equal to an average of the error

terms ζi weighted by a one-dimensional kernel function, and thus behaves similarly to

one-dimensional nonparametric regression estimator. A similar result could be established

for regions close to the boundary of the support. Note that in contrast to Proposition 1,

the details of the result in Proposition 2 do not depend on the relative magnitude of the

bandwidths used in the first and second stage of the estimation procedure.

Combining Theorem 1 and Proposition 1–2 with well-known results about the or-

acle estimator m̃LL, various asymptotic properties of the real estimator m̂LL can be

derived. In the following corollaries we present results for the most relevant scenarios,

addressing uniform rates of consistency and stochastic expansions of order oP (n−2/5) for

proving pointwise asymptotic normality. More refined expansions of higher orders such as

oP (n−1/2), which are useful for the analysis of semiparametric problems in which m0 plays

the role of an infinite dimensional nuisance parameter (e.g. Newey, 1994b; Andrews, 1994;

Chen, Linton, and Van Keilegom, 2003), would also be possible. We do not present such

results here as they would require strong smoothness restrictions that are unattractive

in applications. See Mammen, Rothe, and Schienle (2011) for an alternative approach to

controlling the influence of generated covariates in semiparametric models.

Starting with considering the uniform rate of consistency, it is well-known (Masry,

1996) that under Assumption 1 the oracle estimator satisfies

sup
x∈IR
|m̃LL(x)−m(x)| = Op((log(n)/nh)1/2 + h2) .

This implies the following result.

Corollary 1. Suppose that Assumptions 1, 4 and 5 hold. Then

sup
x∈IR
|m̂LL(x)−m(x)| = Op

(
log(n)1/2

(nmax{h, g})1/2
+ h2 +

log(n)

ngp
+ gq+1 + n−κ

)
.

18



Straightforward calculations show that, under appropriate smoothness restrictions, it

is possible to recover the oracle rate for the real estimator given suitable choice of η and

θ, even if the first-stage estimator converges at a strictly slower rate. Note that the rate

in Corollary 1 improves upon a bound on the uniform rate of convergence of a two-stage

regression estimator derived in Ahn (1995) for a similar setting.

Next, we derive stochastic expansions of m̂LL of order oP (n−2/5) for the case that

η = 1/5. Such expansions immediately imply results on pointwise asymptotic normality

of the real estimator. We start with the case that θ = η, in which the stochastic terms

Γ̂A(x) and ∆̂A(x) are of the same order of magnitude (other bandwidth choices will be

discussed below). During the analysis of this setting, it becomes clear that applying

Theorem 1 requires pθ < 3/10. Thus in order to use the expansion in Proposition 1(b)

only p = 1 is admissible, i.e. S must be one-dimensional for the choice θ = η to be

feasible. In this setting, the notation for the kernel functions appearing in the stochastic

expansions can be somewhat simplified. We define

J̃(v, x) =

∫
K(v − r′0(r−1

0 (x))u)L∗(u)du

H̃Γ(v, x) =

∫
L∗
(
v + s∂xr

−1
0 (x)

)
dsλ̃(x)

where

λ̃(x) =
∂v(ρ(r−1

0 (x))fS(r−1
0 (x)))

fS(r−1
0 (x))r0′(r−1

0 (x))

where r−1
0 is the inverse function of r0, which exists by Assumption 6.

Corollary 2. Suppose that Assumptions 1 and 4–6 hold with η = θ = 1/5 and p = q = 1.

Then the following expansions hold uniformly over x ∈ I−R,n:

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)εi

− 1

nfR(x)

n∑
i=1

(m′0(x)J̃h(r0(Si)− x, x)− H̃Γ
h (Si − r−1

0 (x), x))ζi

+
1

2
β(x)h2 + op

(
n−2/5

)
,

where the bias is given by β(x) =
∫
u2K(u)du m′′0(x) −

∫
u2L(u)du( r′′0(r−1

0 (x))m′0(x) −

∂x[r
′′
0(r−1

0 (x))ρ(r−1
0 (x))]). In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− β(x)h2)
d→ N(0, σ2

m(x))
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where σ2
m(x) = [Var(ε|R = x)

∫
K(t)2dt−2E(εζ|R = x)

∫
K(t)(J̃(t, x)m′0(x)−H̃Γ(t, x))dt

Var(ζ|R = x)
∫

(m′0(x)J̃(t, x)− H̃Γ(t, x))2dt]/fR(x) is the asymptotic variance.

Under the conditions of the corollary the limiting distribution of m̂LL(x) is generally

affected by the pilot estimation step, although a qualitative description of the impact

seems difficult. Depending on the curvature of m0 and the covariance of ε and ζ, the

asymptotic variance of the estimator using generated regressors can be bigger or smaller

than that of the oracle estimator m̃LL. There thus exist settings in which it would be

preferable in practice to base inference on the real estimator even if one was actually able

to compute the oracle estimator.

The next corollary considers the case that θ > η, and thus g/h→ 0. Again, applying

Theorem 1 requires pθ < 3/10 in this setting, and thus only p = 1 is admissible when

using Proposition 1(a) for such a choice of bandwidths. The corollary also focuses on

the special case that ρ(S) := E(Y |R) − E(Y |S) = 0, which implies that Γ̂(x) = 0 with

probability 1. This condition is satisfied for certain empirical applications, such as e.g.

models IV models. Without this additional restriction, an expansion of the difference

m̂LL(x) −m0(x) would be dominated by the term Γ̂A(x), which is Op((log(n)/(ng))1/2)

and thus converges at a slower rate than the oracle estimator.

Corollary 3. Suppose that Assumptions 1, 4 and 5 hold with η = 1/5, 1/5 < θ < 3/10

and p = q = 1, and that ρ(S) = 0 with probability 1. Then the following expansion holds

uniformly over x ∈ I−R,n:

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)(εi −m′0(x)ζi)

+
1

2
h2

∫
u2K(u)du m′′0(x) + op

(
n−2/5

)
.

In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− 1

2
h2

∫
u2K(u)du m′′0(x))

d→ N(0, σ2
m(x))

where σ2
m(x) = Var(ε−m′0(R)ζ|R = x)

∫
K(t)2dt/fR(x) is the asymptotic variance.

The limiting distribution of m̂LL(x) is again affected by the use of generated covariates

under the conditions of the corollary. In this particular case, the form of the asymptotic
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variance has an intuitive interpretation: the estimator m̂LL(x) has the same limiting

distribution as the local linear oracle estimator in the hypothetical regression model

Y = m0(r0(S)) + ε∗,

where ε∗ = ε−m′0(r0(S))ζ. As in Corollary 2 above, depending on the curvature of m0

and the covariance of ε and ζ, the asymptotic variance of the estimator using generated

regressors can be bigger or smaller than that of the oracle estimator m̃LL.

The next corollary discusses the case when θ < η. For such a choice of bandwidth,

applying Theorem 1 requires no restrictions on the dimensionality of S. It turns out

that in this case m̂LL(x) = m̃LL(x) + op(n
−2/5), and thus the limit distribution of m̂LL

is the same as for the oracle estimator m̃LL. The effect exerted by the presence of

nonparametrically generated regressors is thus first-order asymptotically negligible for

conducting inference on m0 in this case.

Corollary 4. Suppose that Assumptions 1, 4 and 5 hold with θ < η = 1/5. Then the

following expansion holds uniformly over x ∈ I−R,n if 2
5
(q + 1)−1 < θ < 3

10
p−1:

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)εi +
1

2
h2

∫
u2K(u)du m′′0(x) + op

(
n−2/5

)
.

In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− 1

2
h2

∫
u2K(u)du m′′0(x))

d→ N(0, σ2
m(x))

where σ2
m(x) = Var(ε|R = x)

∫
K(t)2dt/fR(x) is the asymptotic variance.

4.2. Nonparametric Censored Regression. Consider estimation of the censored

regression model in (2.2). Let r̂(x) be the qth order local polynomial estimator of the

conditional mean r0(x) = E(Y |X = x), and let q̂(r) be the local linear estimator of q0(r)

using the generated covariates r̂(Xi). Then an estimate of µ0 is given by

µ̂(x) = λ+

∫ λ

r̂(x)

1

q̂(u)
du, (4.3)

where the constant λ is chosen large enough to satisfy λ > maxi=1,...,n r̂(Xi) with prob-

ability tending to one. Generalizing Linton and Lewbel (2002), we consider the use of

higher-order local polynomials for the first stage estimator, and allow the bandwidth used
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for the computation of r̂ and q̂ to be different. For presenting the asymptotic proper-

ties of µ̂, let s0(x) = E(I{Y > 0}|X = x) be the proportion of uncensored observations

conditional on X = x, and assume that this function is continuously differentiable and

bounded away from zero on the support of X. We then obtain the following result.

Corollary 5. Suppose that Assumptions 1 and 5 hold with (Y, S, T ) = (I{Y > 0}, X, Y )

and R = r0(S) = r0(X). Furthermore, suppose that θ ∈ (θ, θ̄) where θ and θ̄ are constants

depending on η,q and p as follows:

θ̄ =
1− 3η

p
and θ = max

{
1− 4η

p
,

1

2(q + 1) + p

}
.

Under these conditions, we have that

√
ngp(µ̂(x)− µ0(x))

d→ N

(
0,

σ2
r(x)

fS(x)s2
0(x)

∫
L(t)2dt

)
,

where σ2
r(x) = Var(Y |X = x).

The corollary is analogous to Theorem 5 in Linton and Lewbel (2002). However,

using our results, substantially simplifies the proof and provides insights on admissible

choices of bandwidths. Note that the lower bound θ is chosen such that both the bias of

r̂ and q̂ tends to zero at a rate faster than (ngp)−1/2. Due to this undersmoothing, the

limiting distribution of µ̂− µ is centered at zero. Note that the final estimator converges

at the same rate as the generated regressors. This is due to the fact that the function

r̂ is not only used to compute q̂, but also determines the limits of integration in (4.3).

The “direct” influence of the generated regressors in the estimation of q is asymptotically

negligible in this particular application.

4.3. Nonparametric Simultaneous Equation Models. Now consider nonpara-

metric estimation of the structural function µ1 in the triangular simultaneous equation

model (2.4)–(2.5) using a marginal integration estimator. In order to keep the notation

simple, we restrict our attention to the arguably most relevant case with a single endoge-

nous regressor, but allow for an arbitrary number of exogenous regressors and instruments.

Let µ̂2(z) be the qth order local polynomial estimator of µ2(z) = E(X1|Z = z), and let

m̂(x1, z1, v) be the local linear estimator of m(x1, z1, v) = E(Y |X1 = x1, Z1 = z1, V = v).
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The latter is computed using the generated covariates V̂i = X1i − µ̂2(Zi) instead of the

true residuals Vi from equation (2.5). For simplicity, we use the same bandwidth for all

components of m̂, i.e we put ηj ≡ η for all j = 1, . . . , (2 + d1). The marginal integration

estimator of µ1(x1, z1) is then given by the following sample version of (2.6):

µ̂1(x1, z1) =
1

n

n∑
i=1

m̂(x1, z1, V̂i). (4.4)

The following result establishes the estimator’s asymptotic normality.

Corollary 6. Suppose that Assumptions 1 holds with (Y, S, T ) = (Y, (X1, Z1, Z2), X1)

and R = r0(S) = (X1, Z1, X1 − µ2(Z1, Z2)), and that Assumption 5 holds with r0(S) =

µ2(Z1, Z2). Furthermore, suppose that η ∈ (max{1/(5 + d1), 1/(2p+ 3)}, 1/(1 + d1)), and

that θ ∈ (θ, θ̄), where θ and θ̄ are constants depending on η, q and dj = dim(Zj) as

follows:

θ̄ =
1− 3η

2p
and θ =

1− η(d1 + 1)

2(q + 1)
,

where p = d1 + d2. Under these conditions, we have that

√
nh1+d1(µ̂1(x1, z1)− µ1(x1, z1))

d→ N

(
0,E

(
σ2
ε(x1, z1, V )

fXZ|V (x1, z1, V )

)∫
K̃(t)2dt

)
where K̃(t) =

∏1+d1
i=1 K(ti) is a (1 + d1)-dimensional product kernel, and σ2

ε(x1, z1, v) =

Var(Y −m(R)|R = (x1, z1, v)).

Under the conditions of the corollary, the asymptotic variance of µ̂1(x1, z1) is not

influenced by the presence of generated regressors: If m̂ was replaced in (4.4) with an

oracle estimator m̃ using the actual disturbances Vi instead of the reconstructed ones, the

result would not change. Also, note that the exclusion restrictions on the instruments

imply that E(Y |X1, Z1, V ) = E(Y |X1, Z1, Z2). Therefore Assumption 4 is automatically

satisfied, and the adjustment term Γ̂(x) from Theorem 1 is equal to zero and does not

have to be considered for the proof.

5. Conclusions

In this paper, we analyze the properties of nonparametric estimators of a regression

function, when some the covariates are not directly observable, but have been estimated
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by a nonparametric first-stage procedure. We derive a stochastic expansion showing

that the presence of generated regressors affects the limit behavior of the estimator only

through a smoothed version of the first-stage estimation error. We apply our results to a

number of practically relevant statistical applications.

A. Proofs

Throughout the Appendix, C and c denote generic constants chosen sufficiently large or suffi-

ciently small, respectively, which may have different values at each appearance. Furthermore,

define M̄n = M̄n,1 × . . .× M̄n,d.

A.1. Proof of Theorem 1. In order to prove the statement of the theorem, we have

to introduce some notation. Throughout the proof of this and the following statements, we

denote the unit vector (1, 0, . . . , 0)T in Rp+1 by e1. We also write wi(x, r) = (1, (r1(Si) −

x1)/h1, . . . , (rd(Si)−xd)/hd), and put wi(x) = wi(x, r0), ŵi(x) = wi(x, r̂) and w̃i(x) = wi(x, r̃).

We also define Mh(x, r) = n−1
∑n

i=1wi(x, r)wi(x, r)
TKh(r(Si)−x), and put Mh(x) = Mh(x, r0),

M̂h(x) = Mh(x, r̂) and M̃h(x) = Mh(x, r̃). and set Nh(x) = E(Mh(x, r0)). Furthermore, define

ε∗ = ε− ρ(S) and note that we have E(ε∗|S) = 0 by construction. It also holds that

Yi = m0(r0(Si)) + ε∗i + ρ(Si).

Next, it follows from standard calculations that the real estimator m̂LL can be written as

m̂LL(x) = m0(x) + m̂LL,A(x) + m̂LL,B(x) + m̂LL,C(x) + m̂LL,D(x) + m̂LL,E(x),

where m̂LL,j(x) = α̂j for j ∈ {A,B,C,D,E}, and

(α̂A, β̂A) = argmin
α,β

n∑
i=1

(ε∗i − α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂B, β̂B) = argmin
α,β

n∑
i=1

(m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)

− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂C , β̂C) = argmin
α,β

n∑
i=1

(−m′0(x)T (r̂(Si)− r0(Si))− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂D, β̂D) = argmin
α,β

n∑
i=1

(m′0(x)T (r̂(Si)− x)− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x).

(α̂E , β̂E) = argmin
α,β

n∑
i=1

(ρ(Si)− α− βT(r̂(Si)− x))2Kh(r̂(Si)− x)
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Similarly, the oracle estimator m̃LL can be represented as

m̃LL(x) = m0(x) + m̃LL,A(x) + m̃LL,B(x) + m̃LL,C(x) + m̃LL,D(x) + m̃LL,E(x),

where m̃LL,j(x) = α̃j for j ∈ {A,B,C,D,E}, and

(α̃A, β̃A) = argmin
α,β

n∑
i=1

(εi − α− βT (r0(Si)− x))2Kh(r0(Si)− x),

(α̃B, β̃B) = argmin
α,β

n∑
i=1

(m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)

− α− βT (r0(Si)− x))2Kh(r0(Si)− x),

(α̃C , β̃C) = argmin
α,β

n∑
i=1

(−m′0(x)T (r̂(Si)− r0(Si))− α− βT (r0(Si)− x))2Kh(r0(Si)− x)

(α̃D, β̃D) = argmin
α,β

n∑
i=1

(m′0(x)T (r0(Si)− x)− α− βT (r0(Si)− x))2Kh(r0(Si)− x).

(α̃E , β̃E) = argmin
α,β

n∑
i=1

(ρ(Si)− α− βT((r(Si)− x))2Kh(r(Si)− x)

Note that by construction

m̂LL,D(x) ≡ m̃LL,D(x) ≡ 0. (A.1)

We now argue that

sup
x∈IR

|m̂LL,A(x)− m̃LL,A(x)| = Op(n
−κ1). (A.2)

For a proof of (A.2) note that m̂LL,A(x) and m̃LL,A(x) are given by the first elements of the

vectors M̂(x)−1n−1
∑n

i=1Kh(r̂(Si) − x)εiŵi(x) and M(x)−1n−1
∑n

i=1Kh(r0(Si) − x)εiw̃i(x),

respectively. Using these representations, one sees that (A.2) follows from Lemmas 1 and 2

below.

As a second step, we now show that

sup
x∈IR

|m̂LL,E(x)− m̃LL,E(x)− Γ̂(x)| = Op(n
−κ1 + n−κ2 + n−κ3). (A.3)

To prove (A.3), write µ̂(x) = 1
n

∑n
i=1Kh(r̂(Si)− x)ŵi(x)ρ(Si) and µ(x) = 1

n

∑n
i=1Kh(r0(Si)−

x)wi(x)ρ(Si), and define G(x) = eT1 (Nh(x))−1E(µ̂(x) − µ(x)). With this notation, we have

that m̂LL,E(x) = eT1 M̂h(x)−1µ̂(x) and m̃LL,E(x) = eT1Mh(x)−1µ(x). Using Lemma 4 and some

results of Lemma 3, we then find that

m̂LL,E(x)− m̃LL,E(x)−G(x)

= eT1

(
M̂h(x)−1µ̂(x)−Mh(x)−1µ(x)− E(Mh(x))−1E(µ̂(x)− µ(x))

)
= OP

(
n−( 1

2
(1−η+)+(δ−η)min) + n−( 1

2
(1−η+)+δmin) + n−κ1

)
= OP (n−κ1)
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uniformly over x ∈ IR. Using standard smoothing arguments, we also get that

G(x) = eT1Nh(x)−1E(µ̂(x)− µ(x))

=
1

fR(x)

∫
(Kh(r̂(u)− x)−Kh(r0(u)− x)) ρ(u)fS(u)dxdu+OP (n−2ηmin−(δ−η)min)

=
1

fR(x)

∫
K ′h(r0(u)− x)(r̂(u)− r0(u))ρ(u)fS(u)dxdu+OP (n−δmin−(δ−η)min) +OP (n−κ2)

= Γ̂(x) +OP (n−κ2) +OP (n−κ3) .

uniformly over x ∈ IR. This shows the claim in (A.3)

Finally, from Lemmas 2 and 3 we get that

sup
x∈IR

|m̂LL,B(x)− m̃LL,B(x)| = Op(n
−κ2), (A.4)

sup
x∈IR

|m̂LL,C(x)− m̃LL,C(x)| = Op(n
−κ3), (A.5)

and it is easy to see that

sup
x∈IR

|m̃LL,C(x)−m′0(x)∆̂(x)| = Op(n
−κ). (A.6)

Taken together, the results in (A.1)–(A.6) imply the statement of the theorem.

Lemma 1. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)εi −
1

n

n∑
i=1

Kh(r2(Si)− x)εi| = Op(n
−κ1)

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)
r1,j(Si)− xj

hj
εi −

1

n

n∑
i=1

Kh(r2(Si)− x)
r2,j(Si)− xj

hj
εi| = Op(n

−κ1).

Proof. We only prove the first statement of the lemma. The second claim can be shown using

essentially the same arguments. Without loss of generality, we also assume that

κ1 > (δ − η)min. (A.7)

If κ1 ≤ (δ−η)min the statement of the lemma follows from a direct bound. For C1, C2 > 0 large

enough (see below) we choose Cε such that

Pr(max
i
|εi| > Cε log(n)) ≤ n−C1 , (A.8)

|EεiI{|ε| ≤ Cε log(n)}| ≤ n−C2 . (A.9)

With this choice of Cε we define

∆i(r1, r2) = (Kh(r1(Si)− x)−Kh(r2(Si)− x))ε∗i
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with

ε∗i = εiI{|εi| ≤ Cεi log(n)} − E(εiI{|εi| ≤ C log(n)}).

For the proof of the lemma we apply a chaining argument, compare e.g. the proof of Theorem

9.1 in van de Geer (2000). Now for s ≥ 0, let M̄∗s,n,j be a set of functions chosen such that for

each r ∈ M̄n,j there exists r∗ ∈ M̄∗s,n,j such that ‖r−r∗‖∞ ≤ 2−sn−δj . That is, the functions in

M̄∗s,n,j are the midpoints of a (2−sn−δj )-covering of M̄n,j . By Assumption 3, the set M̄∗s,n,j can

be chosen such that its cardinality #M̄∗s,n,j is at most C exp((2−sn−δj )−αjnξj ). Furthermore,

define M̄∗s,n = M̄∗s,n,1 × . . .× M̄∗s,n,d.

For r1, r2 ∈ M̄n we now choose rs1, r
s
2 ∈ M̄∗s,n such that ‖rs1,j − r1,j‖∞ ≤ 2−sn−δj and

‖rs2,j − r2,j‖∞ ≤ C2−sn−δj , for all j. We then consider the chain

∆i(r1, r2) = ∆i(r
0
1, r

0
2)−

Gn∑
s=1

∆i(r
s−1
1 , rs1) +

Gn∑
s=1

∆i(r
s−1
2 , rs2)−∆i(r

Gn
1 , r1) + ∆i(r

Gn
2 , r2)

where Gn is the smallest integer that satisfies Gn > (1 + cG)(κ1 − (δ − η)min) log(n)/ log(2) for

a constant cG > 0. With this choice of Gn, we obtain that for l = 1, 2

T1 = | 1
n

n∑
i=1

∆i(r
Gn
l , rl)| ≤ C log(n)2−Gnn−(δ−η)min ≤ Cn−κ1 . (A.10)

Now for any a > cG define the constant ca = (
∑∞

s=1 2−as)−1. It then follows that

Pr( sup
r1∈M̄n

| 1
n

n∑
i=1

Gn∑
s=1

∆i(r
s−1
1 , rs1)| > n−κ1)

≤
Gn∑
s=1

Pr( sup
r1∈M̄n

| 1
n

n∑
i=1

∆i(r
s−1
1 , rs1)| > ca2

−asn−κ1)

≤
Gn∑
s=1

#M̄∗s−1,n#M̄∗s,n Pr(
1

n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 ) > ca2

−asn−κ1)

+

Gn∑
s=1

#M̄∗s−1,n#M̄∗s,n Pr(
1

n

n∑
i=1

∆i(r̃
∗,s
1 , r̃∗∗,s1 ) < ca2

−asn−κ1)

= T2 + T3

where the functions r∗,s1 , r̃∗,s1 ∈ M̄∗s−1,n and r∗∗,s1 , r̃∗∗,s1 ∈ M̄∗s,n are chosen such that

Pr(
1

n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 ) > ca2

−asn−κ1) = max
rs−1
1 ,rs1

Pr(
1

n

n∑
i=1

∆i(r
s−1
1 , rs1) > ca2

−asn−κ1),

Pr(
1

n

n∑
i=1

∆i(r̃
∗,s
1 , r̃∗∗,s1 ) < ca2

−asn−κ1) = max
rs−1
1 ,rs1

Pr(
1

n

n∑
i=1

∆i(r
s−1
1 , rs1) > ca2

−asn−κ1).
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We now show that both T2 and T3 tend to zero at an exponential rate:

T2 ≤ exp(−cnc), (A.11)

T3 ≤ exp(−cnc). (A.12)

We only show (A.11), as the statement (A.12) follows by essentially the same arguments. Using

Assumption 3, we obtain by application of the Markov inequality that

T2 ≤ C
Gn∑
s=1

∏
j

exp((2−sn−δj )−αjnξj )E(exp(γn,s
1

n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 )− γn,sca2−asn−κ1))

≤ C
Gn∑
s=1

exp(
∑
j

2sαjnδjαj+ξj − γn,sca2−asn−κ1)

n∏
i=1

E(exp(γn,s
1

n
∆i(r

∗,s
1 , r∗∗,s1 ))) (A.13)

where γn,s = cγ2(2−a)sn−κ1+1−η++2(δ−η)min with a constant cγ > 0, small enough. Now the last

term on the right hand side of (A.13) can be bounded as follows:

E(exp(γn,s
1

n
∆i(r

∗,s
1 , r∗∗,s1 ))) ≤ 1 + CE(γ2

n,sn
−2∆2

i (r
∗,s
1 , r∗∗,s1 ))

≤ exp(Cγ2
n,sn

−2nη+−2(δ−η)min2−2s), (A.14)

where we have used that

|γn,s
1

n
∆i(r

∗,s
1 , r∗∗,s1 )| ≤ Cγn,s

1

n
log(n)nη+n−(δ−η)min2−s

≤ C log(n)n(δ−η)min−κ12−as+s

≤ C log(n)n(cG−a)(κ1−(δ−η)min)

≤ C

for n large enough because of (A.7). Inserting (A.14) into (A.13), we obtain, if a and cγ were

chosen sufficiently small, that

T2 ≤ C
Gn∑
s=1

exp(
∑
j

2sαjnδjαj+ξj − c22(1−a)sn1−2κ1−η++2(δ−η)min)

≤ C
Gn∑
s=1

exp(−csnc)

≤ exp(−cnc).

Finally, it follows from a simple argument that

T4 = Pr( sup
r1,r2∈M̄n

| 1
n

n∑
i=1

∆i(r
0
1, r

0
2)| > n−κ1) ≤ exp(−cnc) (A.15)
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because the set M̄∗0,n can always be chosen such that it contains only a single element.

From (A.10), (A.11), (A.12) and (A.15), we thus obtain that

sup
x∈IR

Pr( sup
r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)ε∗i −
1

n

n∑
i=1

Kh(r2(Si)− x)ε∗i | > Cn−κ1) ≤ exp(−cnc)

(A.16)

Now for CI > 0 choose a grid IR,n of IR with O(nCI ) points, such that for each x ∈ IR there

exists a grid point x∗ = x∗(x) ∈ IR,n such that ‖x− x∗‖ ≤ n−cCI . If CI is chosen large enough,

this implies that

sup
x∈IR

sup
r∈M̄n

| 1
n

n∑
i=1

Kh(r(Si)− x)εi −
1

n

n∑
i=1

Kh(r(Si)− x∗)εi| ≤ n−κ1 (A.17)

for large enough n, with probability tending to one. Furthermore, it follows from (A.16) that

sup
x∈IR,n

sup
r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)εi −
1

n

n∑
i=1

Kh(r2(Si)− x)εi| ≤ n−κ1 . (A.18)

The statement of the lemma then follows from (A.8)–(A.9) and (A.17) – (A.18), if the constants

C1 and C2 were chosen large enough.

Lemma 2. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)(
r1,j(Si)− xj

hj
)a(

r1,l(Si)− xl
hl

)b

− 1

n

n∑
i=1

Kh(r2(Si)− x)(
r2,j(Si)− xj

hj
)a(

r2,l(Si)− xl
hl

)b| = Op(n
−(δ−η)min)

for j, l = 1, . . . , q j 6= l and 0 ≤ a+ b ≤ 2, 0 ≤ a, b.

Proof. The lemma follows from

sup
x,s
|Kh(r1(s)− x)−Kh(r2(s)− x)| ≤ Cn−(δ−η)min+η+

for r1, r2 ∈ M̄n and from

sup
x∈IR,r∈M̄

| 1
n

n∑
i=1

Kh(r(Si)− x)| ≤ Cn−1+η+ sup
x∈IR

#{i : |r0,j(Si)− xj | ≤ Cn−ηj for j = 1, ..., d}

= Op(1)

which follows from a simple calculation.
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Lemma 3. Suppose that the assumptions of Theorem 1 hold. For a random variable Rn = Op(1)

that neither depends on x nor i it holds that

sup
x∈IR,1≤i≤n

|[m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)]Ii(x)| ≤ Rnn−2ηmin , (A.19)

sup
x∈IR

‖ 1

n

n∑
i=1

Kh(r̂(Si)− x)ŵi(x)ŵi(x)T − 1

n

n∑
i=1

Kh(r0(Si)− x)w̃i(x)w̃i(x)T ‖ ≤ Rnn−(δ−η)min ,

(A.20)

sup
x∈IR

‖ 1

n

n∑
i=1

Kh(r0(Si)− x)w̃i(x)w̃i(x)T − fR(x)BK‖ ≤ Rn(n−ηmin + n−(1−η+)/2
√

log n).

(A.21)

where Ii(x) = I{‖(r̂(Si) − x)/h‖1 ≤ 1} is an equals one if r̂(Si) − x lies in the support of the

kernel function Kh and zero otherwise, and BK = diag(1,
∫
u2K(u)du, . . . ,

∫
u2K(u)du) is a

(d+ 1)× (d+ 1) diagonal matrix.

Proof. Claim (A.19) follows by a simple calculation. Claim (A.20) is a direct consequence of

Lemma 2. And (A.21) follows from standard arguments from kernel smoothing theory. For the

stochastic part one makes use of Lemma 5 given in Appendix A.7 below.

Lemma 4. Suppose that the assumptions of Theorem 1 hold. Then it holds that

sup
x∈IR,r1,r2∈M̄

‖µ(x, r1)− µ(x, r2)− E[µ(x, r1)− µ(x, r2)]‖ = Op(n
−κ1), (A.22)

sup
x∈IR
|µ̂(x)| = Op(

√
log n n−(1−η+)/2). (A.23)

where µ̂(x) = n−1
∑n

i=1Kh(r̂(Si)−x)ŵi(x)ρ(Si) and µ(x) = n−1
∑n

i=1Kh(r0(Si)−x)wi(x)ρ(Si).

Proof. For a proof of (A.22) one proceeds as in Lemma 1. Claim (A.23) follows by classical

smoothing arguments. Note that we have that E(µ̂(x, r0)) = 0.

A.2. Proof of Proposition 1 In order to prove Proposition 1, we use the fact that

the local polynomial estimator satisfies a certain uniform stochastic expansion if Assumption 4

holds. In order to present this result, we first have to introduce a substantial amount of further

notation. For simplicity we assume g1 = ... = gp and we write g for this joint value and for the

vector g = (g, ..., g).

Let Ni =
(
i+q−1
q−1

)
be the number of distinct q-tuples u with u+ = i. Arrange these q-

tuples as a sequence in a lexicographical order (with the highest priority given to the last

position so that (0, . . . , 0, i) is the first element in the sequence and (i, 0, . . . , 0) the last element).
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Let τi denote this one-to-one mapping, i.e. τi(1) = (0, . . . , 0, i), . . . , τi(Ni) = (i, 0 . . . , 0).

For each i = 1, . . . , q, define a Ni × 1 vector µi(x) with its kth element given by xτi(k), and

write µ(x) = (1, µ1(x)T , . . . , µq(x)T )T , which is a column vector of length N =
∑q

i=1Ni. Let

νi =
∫
L(u)uidu and define νni(x) =

∫
L(u)uifS(x + gu)du. For 0 ≤ j, k ≤ q, let Mj,k and

Mn,j,k(x) be two Nj ×Nk matrices with their (l,m) elements respectively given by

[Mj,k]l,m = ντj(l)+τk(m) and [Mnj,k(x)]l,m = νn,τj(l)+τk(m)(x)

Now define the N ×N matrices Mq and Mn,q(x) by

Mq =


M0,0 M0,1 . . . M0,q

M1,0 M1,1 . . . M1,q

...
...

. . .
...

Mq,0 Mq,1 . . . Mq,q

 , Mn,q(x) =


Mn,0,0(x) Mn,0,1(x) . . . Mn,0,q(x)

Mn,1,0(x) Mn,1,1(x) . . . Mn,1,q(x)
...

...
. . .

...

Mn,q,0(x) Mn,q,1(x) . . . Mn,q,q(x)


Finally, denote the first unit q-vector by e1 = (1, 0, . . . , 0). With this notation, it can be

shown along classical lines that the local polynomial estimator r̂ admits the following stochastic

expansion:

r̂(s) = r0(s) +
1

n

n∑
i=1

e1M
−1
nq (s)µ((Si − s)/g)Lg(Si − s)ζi + gq+1Bn(s) +Rn(s), (A.24)

where sups∈IS ‖Rn(s)‖ = Op((log(n)/ngp)1/2) and Bn is a bias term that satisfies

Bn(s) =
1

(q + 1)!
e1M

−1
q Aqr

(q+1)
0 (s) + op(1) ≡ b(s) + op(1), (A.25)

To prove the proposition, define the stochastic component and the bias term of the expan-

sion (A.24) as r̂A(s) = n−1
∑n

i=1 e1M
−1
nq (s)µ((Si − s)/g)Lg(Si − s)ζi and r̂B(s) = gq+1Bn(s),

respectively. Now the function ∆̂ can be written as

∆̂(x) = eT1 Nh(x)−1E (Kh(r0(S)− x)w(x, r)r̂A(S))

+ eT1 Nh(x)−1E (Kh(r0(S)− x)w(x, r)r̂B(S)) +Op

(
log(n)

ngp

)
≡ ∆̂A(x) + ∆̂B(x) +Op

(
log(n)

ngp

)
,

uniformly over x ∈ IR. We first analyze the term ∆̂B(x). Through the usual arguments from

kernel smoothing theory, one can show for x ∈ I−R,n that

∆̂B(x) = gq+1eT1 Nh(x)−1E (Kh(r0(S)− x)w(x, r)b(S)) + op(g
q+1)

= gq+1E(b(S)|r0(S) = x) + op(g
q+1 + n−2η)
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since the function E(b(S)|r0(S) = x) is continuous with respect to x because of Assumptions 5

and 6. Explicitly, we have

E(b(S)|r0(S) = x) =

∫
b(s−p, ϕ(s−p, x))fS(s−p, ϕ(s−p, x))∂s−pϕ(s−p, x)ds−p∫

fS(s−p, ϕ(s−p, x))∂s−pϕ(s−p, x)ds−p
.

Next, consider the term ∆̂A(x). Note that for x ∈ I−R,n we have that

∆̂A(x) =
1

nfR(x)

n∑
j=1

ψn(x, Sj)ζj (A.26)

with

ψn(x, s) =

∫
IS

(
Kh(r0(u)− x)e1M̄

−1
nq (u)µ((s− u)/g)Lg(s− u)

)
fS(u)du

=

∫
Kh(r0(u)− x)L∗n,g(s, u− s)du

where L∗n,g(s, t) = fS(s− t)e1M̄
−1
nq (s− t)µ(t/g)Lg(t). Define I−S,n as the set that contains all s ∈

IS that do not lie in a g-neighborhood of the boundary of IS . Uniformly over s ∈ I−S,n, we have

that Mn,q(s)− fS(s)Mq = O(g) . Thus for s ∈ I−S,n, we have that ψn(x, s) = (1 + O(g))ψ(x, s)

where the function ψ is equal to ψ(x, s) =
∫
Kh(r0(u)− x)L∗g(u− s)du with modified kernel L∗

defined as

L∗(t) = e1M
−1
q µ(t)L(t). (A.27)

Note that L∗ is the equivalent kernel of the local polynomial regression estimator (see Fan and

Gijbels (1996, Section 3.2.2)). For q = 0, 1 the equivalent kernel is in fact equal to the original

one, whereas L∗(t) is equal to L(t) times a polynomial in t of order q for q ≥ 2, with coefficients

such that its moments up to the order q are equal to zero. The kernel L∗n,g(u, t) has the same

moment conditions in t as L∗g but depends on u.

We now derive explicit expressions for the leading term in equation (A.26) for the cases

a)–c) of the proposition. Starting with case a), in which g/h→ 0, it follows by substitution and
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Taylor expansion arguments that with K ′h(v) = h−1K ′(h−1v) and K ′′h(v) = h−1K ′′(h−1v)

ψn(x, v) =

∫
Kh(r0(s)− x)L∗n,g(s, s− v)ds

=

∫
Kh(r0(v − tg)− x)L∗n(v − tg, t)dt

=

∫
(Kh(r0(v)− x) +K ′h(r0(v)− x)

r0(v − tg)− r0(v)

h

+K ′′h(χ1 − x)
1

2

(
r0(v − tg)− r0(v)

h

)2

)L∗n(v − tg, t)dt

= Kh(r0(v)− x) +K ′h(r0(v)− x)

∫
(−∂sr0(v)

tg

h
+ ∂2

sr0(χ2)
t2g2

2h
)L∗n(v − tg, t)dt

−
∫
K ′′h(χ1 − x)

1

2

(
∂sr0(χ3)tg

h

)2

L∗n(v − tg, t)dt,

where χ1,χ2 and χ3 are intermediate values between r0(v) and r0(v − tg), v and v − tg, and

v and v − tg, respectively. This gives an expansion for ψn(x, v) of order (g/h)2. For v 6∈ I−S,n
one gets an expansion of order g/h. Put kn(v) = −∂sr0(v)

∫
tL∗n(v − tg, t)dt. Together with

Lemma 5 in Appendix A.7, we thus obtain that

1

nfR(x)

n∑
j=1

ψn(x, Sj)ζj =
1

nfR(x)

n∑
i=1

(
Kh(r0(Si)− x) +

g

h
K ′h(r0(Si)− x)kn(Si)

)
ζi

+Op

((g
h

)2
(

log(n)

nh

)1/2
)

=
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)ζi +Op

((
g2

h2
+

√
g3

h2

)√
log(n)

nh

)
as claimed. To show statement b) of the proposition, we rewrite the function ψn as follows:

ψn(x, v) =

∫ (
Kh (r0(v)− x+ ∂sr0(v)th) +K ′

(χ1

h

)
∂2
sr0(χ2)

1

2
t2
)
L∗n(v − th, t)dt

= Jn,h(x, v) + h

∫
K ′h(χ1)∂2

sr0(χ2)
1

2
t2L∗n(v − th, t)dt

where Jn,h(x, s) =
∫
Kh (r0(s)− x− ∂sr0(s)uh)L∗n(s−uh, u)du, and χ1 is an intermediate value

between r0(v+ gt) and r0(v) + ∂sr0(v)tg, and χ2 is an intermediate value between v and v+ gt.

As in the proof of part a), it follows from Lemma 5 in Appendix A.7 that

1

nfR(x)

n∑
j=1

ψn(x, Sj)ζj =
1

nfR(x)

n∑
j=1

Jn,h(x, Sj)ζj +Op

(
h

√
log(n)

nh

)

=
1

nfR(x)

n∑
j=1

Jh(x, Sj)ζj +Op

(√
log(n)

n

)

where Jh uses the location independent form of the equivalent kernel L∗ as defined in the text

in front of Proposition 1. This implies the desired result.
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Now consider statement c) of the proposition. In this case, where g/h→∞, we can rewrite

the function ψn as follows:

ψn(x, v) =

∫
Kh(wp − x)L∗n,g((w−p, ϕ(w))T , (w−p − v−p, ϕ(w)− vp)T )∂xϕ(w)dw.

From tedious but conceptionally simple Taylor expansion arguments similar to the ones em-

ployed for case a), and from Lemma 5 one gets that

1

nfR(x)

n∑
j=1

ψn(x, Sj)ζj =
1

nfR(x)

n∑
j=1

Hn,g(x, Sj)ζj +Op

(
h2

g2

√
log(n)

ng

)
,

where

Hn,g(x, v) =

∫
K(t)L∗n,g ((v−p + gs−p, Gn(v−p, x; s−p, t)) , (s−p, Gn(v−p, x; s−p, t)− vp))

∂xϕ(v−p, x)ds−pdt (A.28)

and Gn(v−p, x; s−p, t) = ϕ(v−p, x) + gs−p∂−pϕ(v−p, x) + ht∂xϕ(v−p, x). With H∆
n as defined in

the text, we find

1

nfR(x)

n∑
j=1

ψn(x, Sj)ζj =
1

nfR(x)

n∑
j=1

H∆
n (x, Sj)ζj

+Op

((
1 +

√
h

g

)√
log(n)

n
+
h2

g2

√
log(n)

ng

)
.

Since O(h/g) = o(1), this completes our proof.

A.3. Proof of Proposition 2. To show the result, note that

Γ(x, r) = eT1 Nh(x)−1E((Kh(r(S)− x)−Kh(r0(S)− x))w(x)ρ(S)) +Op(n
−((1/2)(1−η+)+2δ−η))

= E(ρ(S)|r(S) = x)− E(ρ(S)|r0(S) = x) +Op(n
−2η + n−((1/2)(1−η+)+2δ−η))

uniformly over x ∈ IR and r ∈ Mn. Since E(ρ(S)|r0(S)) ≡ 0 by construction, it suffices

to consider the term E(ρ(S)|r(S) = x). To simplify the exposition, we strengthen Assump-

tion 6 and suppose that in addition to r0 all functions r ∈ Mn are strictly monotone with

respect to their last argument, and write ϕr for corresponding the inverse function that satisfies

r(u−p, ϕr(u−p, x)) = x (without this condition, the notation would be much more involved, as

we would have to consider all regions where the functions r ∈Mn are piecewise monotone with

respect to the last component separately). Using rules for integrals on manifolds, we derive the

following explicit expression for E(ρ(S)|r(S) = x):

E(ρ(S)|r(S) = x) =

∫
ρ(s−p, ϕr(s−p, x))fS(s−p, ϕr(s−p, x))∂−pϕr(s−p, x)ds−p∫

fS(s−p, ϕr(s−p, x))∂−pϕr(s−p, x)ds−p
,
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Set the numerator of the above expression as γ1(x, r) and the denominator as γ2(x, r). Then

clearly γ2(x, r̂) = fR(x) + op(1) uniformly over x ∈ IR. Moreover, note that the mapping

r 7→ ρ(s−p, ϕr(s−p, x))fS(s−p, ϕr(s−p, x))

is Hadamard differentiable at r0, with derivative

r 7→ ∂pλ(s−p, ϕ(s−p, x))

∂pr0(s−p, ϕ(s−p, x))
r(s−p, ϕ(s−p, x)).

It follows with γ1(x, r0) = 0 that

γ1(x, r) =

∫
∂pλ(s−p, ϕ(s−p, x))

∂pr0(s−p, ϕ(s−p, x))
(r(s−p, ϕ(s−p, x))− r0(s−p, ϕ(s−p, x)))(∂−pϕr(s−p, x))ds−p

+Op(‖r − r0‖2∞)

We evaluate the term γ1(x, r̂), substitute the uniform expansion (A.24) for r̂(s)− r0(s) into the

explicit expression derived above, and use standard arguments from kernel smoothing theory.

This gives the desired expansion for Γ̂A. The form of Γ̂B follows from the same arguments used

to derive the form of ∆̂B in the proof of Proposition 1.

A.4. Proofs of Corollaries 1–4. The statements of these corollaries follow by direct

application of Proposition 1–2 and Theorem 1. The statement of Corollary 1 is immediate. For

Corollaries 2–4, we only have to check that the error bounds in Theorem 1 and Proposition 1–2

are of the desired order. We only discuss how the constants α, δ and ξ can be chosen. Note that

all these constants have no subindex because we only consider the case d = 1. We apply Theorem

1 conditionally on the values of S1,...,Sn. Then the only randomness in the pilot estimation

comes from ζ1, ..., ζn. We can decompose r̂ into r̂A + r̂B, where r̂A is the local polynomial fit

to (Si, ζi) and r̂B is the local polynomial fit to (Si, r0(Si)). Conditionally given S1,...,Sn, the

value of r̂B is fixed and for checking Assumption 3 we only have to consider entropy conditions

for sets of possible outcomes of r̂A. We will show that with α = p/k one can choose for δ and ξ

any value that is larger than (1− pθ)/2 or −pk−1(1− pθ)/2 + pθ, respectively. Note that then

α ≤ 2 because of Assumption 4(iii). It can be easily checked that we get the desired expansions

in Corollaries 1 and 2 with this choices of α = p/k, δ and ξ (with δ and ξ small enough). In

particular note that we can make δα+ ξ as close to pθ as we like.

It is clear that Assumption 2 holds for this choice of δ. This follows by standard smoothing

theory for local polynomials. Compare also Lemma 5 and the proof of Proposition 1. It remains

to check Assumption 3. It suffices to check the entropy conditions for the tuple of functions
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(n−1
∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi : 0 ≤ π+ ≤ q, πj ≥ 0 for j = 1, ..., p). This follows because

we get r̂A by multiplying this tuple of functions with a (stochastically) bounded vector. We

now argue that all derivatives of order k of the functions n−1
∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi

can be bounded by a variable Bn that fulfills Bn ≤ bn = nξ
∗∗

) with probability tending to one.

Here ξ∗∗ is a number with ξ∗∗ > −1
2(1 − pθ) + kθ. This bound holds uniformly in s and π.

Furthermore, the functions n−1
∑n

i=1 Lh(Si − s)[(Si − s)/g]πζi can be bounded by a variable

An that fulfills An ≤ an = nξ
∗
) with probability tending to one. Here ξ∗ is a number with

ξ∗ > −1
2(1 − pθ). Again, this bound holds uniformly in s and π. We now consider the set

of functions on IS that are absolutely bounded by an and that have all partial derivatives of

order k absolutely bounded by bn. We argue that this set can be covered by C exp(λ−p/kb
p/k
n )

balls with ‖ · ‖∞-radius λ for λ ≤ an. Here the constant C does not depend on an and bn.

This entropy bound shows that Assumption 3 holds with these choices of α, δ and ξ. For the

proof of the entropy bound one applies an entropy bound for the set of functions on IS that are

absolutely bounded by 1 and that have all partial derivatives of order k absolutely bounded by

1. This set can be covered by C exp(λ−p/k) balls with ‖ · ‖∞-radius λ for λ ≤ 1. The desired

entropy bound follows by rescaling of the functions. Note that we have that b−1
n an → 0.

A.5. Proof of Corollary 5 Our proof has the same structure as the one provided by

Linton and Lewbel (2002), but making use of Theorem 1 considerably simplifies some of their

arguments. First, note that the restriction that θ < θ < θ̄ implies that (ngp)1/2h2 → 0 and

(ngp)1/2gq+1 → 0. From a second-order Taylor expansion, we furthermore obtain that

µ̂(x)− µ0(x) =
1

q0(r0(x))
(r̂(x)− r0(x)) +

∫ λ

r0(x)

q̂(s)− q0(s)

q0(s)2
ds− q̂′(r̄(x))

2q̂(r̄(x))2
(r̂(x)− r(x))2

−
∫ λ

r(x)

(q̂(s)− q0(s))2

q̂(s)q0(s)2
ds+

(q̂(ř(x))− q0(ř(x)))2

q̂(ř(x))q0(ř(x))
(r̂(x)− r0(x))

≡ T1 + T2 + T3 + T4 + T5

where r̂(x) and ř(x) are intermediate values between r(x) and r̂(x). Now it follows from standard

arguments for local linear estimators that

√
ngpT1

d→ N

(
0,

σ2
r (x)

fS(x)s2
0(x)

∫
L2(t)dt

)
,

since s0(x) = q0(r0(x)). To prove the corollary, it thus only remains to be shown that the

remaining four terms in the above expansion are of smaller order than T1. Under the conditions

of the corollary, it is easy to show with straightforward rough arguments that inf q(s) > 0,
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sup q̂′(s) = Op(1) and sup |q̂(s) − q0(s)|2 = op((ng
p)−1/2) where the supremum and infimum

are taken over s ∈ (ro(x) − ε, λ0 + ε) for some ε > 0, respectively. This directly implies that

T3 + T4 + T5 = op((ng
p)−1/2). Now consider the term T2. From Theorem 1, we obtain that

T2 =

∫ λ

r0(x)

q̃(s)− q0(s)

q0(s)2
ds−

∫ λ

r0(x)

q′0(s)∆̂(s)− Γ̂(s)

q0(s)2
ds+Op(n

−κ),

where q̃(x) is the oracle estimator of the function q obtained via local linear regression of I{Y >

0} on r0(X), and ∆̂(s) and Γ̂(x) are the adjustment terms that appear in the main expansion

in Theorem 1, with the necessary adjustments to the notation. Using similar arguments as in

the proof of Proposition 1–2 and Corollaries 2-4, and the restriction that θ < θ < θ̄, we obtain

that∫ λ

r(x)

q̃(s)− q(s)
q2(s)

ds =
1

n

n∑
i=1

εi
fR(r0(Xi))

+Op(h
2) = Op(n

−1/2) +Op(h
2) = op((ng

p)−1/2),

for εi = I{Yi > 0} − q0(Xi), and similarly that∫ λ

r(x)

q′0(s)∆̂(s)− Γ̂(s)

q0(s)2
ds = Op(n

−1/2) +Op

(
log n

ngp

)
+Op(g

q+1)

= op((ng
p)−1/2).

Thus T2 = op((ng
p)−1/2). Finally, straightforward calculations show that θ < θ < θ̄ also implies

that Op(n
−κ) = op((ng

p)−1/2). This completes the proof.

A.6. Proof of Corollary 6 Let f̂ = (m̂, µ̂2) and f̄ = (m,µ2), define the functional Sn(f)

as

Sn(f) =
1

n

n∑
i=1

f1(x1, z1, X1i − f2(Zi))− µ1(x1, z1),

and let Ṡn(f)[h] = limt→0(Sn(f + th) − Sn(f))/t denote its directional derivative. One then

obtains through direct calculations that for any f = (f1,A + f1,B, f2) with bounded second

derivatives we have that

‖Sn(f)− Sn(f̄)− Ṡn(f̄)[f − f̄ ]‖∞

= O(‖f2 − f̄2‖2∞) +O(‖f2 − f̄2‖∞‖f (v)
1,A − f̄

(v)
1 ‖∞) +O(‖f1,B‖∞)

where f
(v)
1,A(x1, z1, v) = ∂vf1,A(x1, z1, v). Using the same kind of arguments as in the proof of

Proposition 1, under the conditions of the corollary one can derive the following stochastic
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expansion of m̂ up to order op((nh
1+d1)−1/2), uniformly over (x1, z1, v) in the h-interior of the

support of (X1, Z1, V ):

m̂(x1, z1, v)−m(x1, z1, v) =

1

nfR(x1, z1, v)

n∑
i=1

Kh((X1i, Z1i, Vi)− (x1, z1, v))εi + op((nh
1+d1)−1/2), (A.29)

where εi = Y − m(X1i, Z1i, Vi). A similar, but notationally more involved expansion can be

derived for values of (x1, z1, v) in the proximity of the boundary. Note that since exclusion

restriction on the instruments that E(U |Z1, Z2, V ) = E(U |V ) implies that E(ε|Z1, Z2, V ) = 0.

In the notation of Theorem 1, this means that ρ(s) ≡ 0, and hence the term corresponding to

Γ̂(x) is equal to zero and does not need to be considered.

Now let f̂1,A denote the sum of the function m and the leading term of the expansion (A.29),

and denote the remainder term by f̂1,B. Then it follows from e.g. Masry (1996) and the

conditions on η and θ that

‖f̂2 − f̄2‖∞ = OP ((log(n)/(ngd1+d2))1/2) = op((nh
1+d1)−1/4),

and it follows from the same result together with Lemma 5 in Appendix A.7 that

‖f̂2 − f̄2‖∞‖f̂ (v)
1,A − f̄

(v)
1 ‖∞ = OP (log(n)/(n2h3+d1gd1+d2)1/2) = op((nh

1+d1)−1/2).

For any fixed values (x1, z1) we thus have that

µ̂1(x1, z1)− µ1(x1, z1) = Sn(f̂) = Sn(f̄) + T1,n + T2,n + op((nh
1+d1)−1/2),

where

T1,n = − 1

n

n∑
i=1

m(v)(x1, z1, Vi)(µ̂2(Zi)− µ2(Zi)),

T2,n =
1

n

n∑
i=1

(m̂(x1, z1, Vi)−m(x1, z1, Vi)).

Being a simple sample average of i.i.d. mean zero random variables, one can directly see that

Sn(f0) = Op(n
−1/2) = op((nh

1+d1)−1/2). Using a stochastic expansion for µ̂2 as in the proof of

Proposition 1, and applying projection arguments for U-Statistics, one also finds that T1,n =

Op(n
−1/2) = op((nh

1+d1)−1/2). Now consider the term T2,n. From the expansion in (A.29), it

follows that for any fixed values (x1, z1) we have that

T2,n =
1

n

n∑
j=1

1

nfR(x1, z1, Vj)

n∑
i=1

Kh((X1i, Z1i, Vi)− (x1, z1, Vj))εi + op((nh
1+d1)−1/2). (A.30)
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This in turn implies that

√
nh1+d1T2,n

d→ N

(
0,E

(
σ2
ε(x1, z1, V )

fXZ1|V (x1, z1, V )

)∫
K̃(t)2dt

)
using again projection arguments for U-Statistics.

A.7. Uniform Rates for Generalized Kernels The following auxiliary lemma states

uniform rates for averages of i.i.d. mean zero random variables weighted by “kernel-type”

expressions. It is used in the proofs of several of our results. Modifications of the lemma are

well known in the smoothing literature, see e.g. (Härdle, Jansen, and Serfling, 1988). The

lemma can be proved by standard smoothing arguments. One can proceed by using a Markov

inequality as in the proof of Lemma 1 but without making use of a chaining argument.

Lemma 5. Assume that D ⊂ Rdx is a compact set, and Wn,h is a kernel-type function that

satisfies Wn,h(u, z) = 0 for ||u − t(z)|| > bnh for some deterministic sequence 0 < b ≤ |bn| ≤

B <∞, and t : RdS → Rdx a continuously differentiable function, for any u ∈ D and z ∈ RdS .

Furthermore, assume that |Wn,h(u, z) − Wn,h(v, z)| ≤ l ||u−t(z)||h h−dxW̃n(v, t(z)) with supn W̃n

bounded, and that E[exp (ρ|ε|)|S] < C a.s. for a constant C > 0 and ρ > 0 small enough. Then

we have that

sup
x∈D

∣∣∣∣∣ 1n
n∑
i=1

anWn,h(x, Si)εi

∣∣∣∣∣ = Op

(√
log(n)

nhdx

)
.

for any deterministic sequence an with |an| ≤ A.
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