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Abstract

Linear regression adjustments for pre-treatment covariates are widely used in eco-
nomics to lower the variance of treatment effect estimates when analyzing data from
randomized experiments. This method is robust to misspecification, and delivers re-
liable confidence intervals even in relatively small samples. More flexible covariate
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tential to improve efficiency. They are rather uncommon in practice, however, because
they can introduce bias or require very large samples in order for asymptotic inference
to be reliable. This paper shows that with a simple modification of the treatment
effect estimator, it is possible to alleviate these issues substantially. For a large class of
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without sacrificing the robustness properties of linear regressions. Full efficiency can be
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1. INTRODUCTION

Randomized experiments have become increasingly popular in many areas of applied eco-
nomics, as they allow for straightforward inference on causal effects. With a binary treat-
ment, for instance, the difference in average outcomes among treated and untreated units
constitutes an unbiased estimator of the average treatment effect. It is also easy to form
a confidence interval based on this estimator that, while formally justified by asymptotic
theory, is known to work well even with rather moderate sample sizes.

The “difference-in-means” estimator is not statistically efficient, however, if one observes
pre-treatment covariates in addition to units’ outcomes and treatment assignments. Such
data are frequently available in economic applications, and often incorporated into a linear
regression of outcomes on a treatment indicator as additional control variables (possibly
interacted with the treatment indicator). Standard regression theory implies that proceed-
ing like this improves the efficiency of the treatment effect estimator without introducing
bias, irrespective of whether the linear model is correctly specified or not.1 Moreover, it is
straightforward to form confidence intervals through conventional robust standard errors.

While linear regression adjustments improve upon a “difference-in-means” analysis, they
are generally not optimal, in the sense that the resulting estimator does not have the small-
est asymptotic variance that a regular estimator could have in such a setup. More precise
estimates can in principle be obtained by postulating more flexible nonlinear parametric
specifications of the relationship between covariates and outcomes; and full statistical effi-
ciency can also be achieved by adjusting for covariates nonparametrically, using methods
like series regression or local linear smoothing.

These more involves types of covariate adjustments are not widely used in practice, how-
ever, since they lack the robustness properties of the linear regression approach. Nonlinear
parametric adjustments can lead to biased treatment effect estimates under misspecification
(e.g. Gail et al., 1984). Nonparametric adjustments can be sensitive to the choice of tuning
parameters in finite samples, lead to estimators of the average treatment effect that are
typically biased in finite samples, and are only guaranteed to lead to full efficiency under del-
icate regularity conditions that are generally considered unrealistic in settings with several

1Throughout the paper, the parameter of interest is the population-level average treatment effect, and
sampling from the population is the source of uncertainty about its value. This framework is commonly
used in economics. An alternative framework, used frequently in the statistics literature, considers the
sample average treatment effect of the observed units as the parameter of interest, and random assignment
of the treatment as the only source of uncertainty. Linear regression adjustments can be biased in the latter
framework, and potentially increase the variance of the treatment effect estimator. See Freedman (2008) and
Lin (2013) for further discussion.
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covariates (e.g. Robins and Ritov, 1997).
In this paper, we show that such concerns can be substantially alleviated by choosing a

treatment effect estimator that takes the form of a sample average of an empirical analogue
of the underlying efficient influence function (EIF). This EIF estimator is very similar to
doubly robust estimators of the average treatment effect in a model with unconfounded
assignment (e.g. Robins et al., 1995; Robins and Rotnitzky, 2001; Van der Laan and Robins,
2003; Bang and Robins, 2005; Farrell, 2015). The main difference is that it replaces the
estimated propensity scores that appear in doubly robust estimators with their true values,
which are determined by, and thus known to, the analyst in a randomized experiment.

We show that due to this simple modification the EIF estimator satisfies a robustness
property with respect to the covariate-adjustment scheme that is substantially stronger than
the Neyman orthogonality (or local robustness) condition considered, for example, in Belloni
et al. (2017), Chernozhukov et al. (2018a) and Chernozhukov et al. (2018b). Due to this spe-
cial robustness property, the EIF estimator is

√
n-consistent, essentially unbiased (in a sense

made precise below), and asymptotically normal for a very large class of covariate adjust-
ments that includes misspecified parametric and arbitrarily slowly converging nonparametric
ones.2 The EIF estimator is also fully efficient if the covariate-adjustment procedure chosen
by the researcher consistently estimates the conditional expectation of outcomes given treat-
ment status and covariates. Valid inference can be conducted, however, without the analyst
having to take a stand on whether the covariate-adjustment procedure is consistent through
a simple simple estimator of the EIF estimator’s asymptotic variance. EIF estimation can
thus make use of flexible covariate adjustments without sacrificing any of the robustness
properties of linear regression adjustments.

To illustrate how our results for the EIF estimator differ from the ones typically obtained
in the literature, consider the case of nonparametric covariate adjustments, for example via
local linear or series regression. The EIF estimator then falls into the class of semiparamet-
ric two-step (STS) estimators, which are estimators of a finite-dimensional parameter that
depend on a nonparametrically estimated nuisance function. Conditions for STS estimators
to be

√
n-consistent and asymptotically normal typically include that the nonparametric

component is consistent and converges with a rate of smaller order than n−1/4 (Newey, 1994;
Chen et al., 2003; Belloni et al., 2017; Chernozhukov et al., 2018a). In settings with several
covariates, such rates can generally only be achieved under strong smoothness conditions on

2We focus on a traditional setup in which the number of covariates is fixed as the sample size increases.
See Wager et al. (2016), and Wu and Gagnon-Bartsch (2017) for similar results in high-dimensional settings
when machine learning algorithms are used to adjust for covariates.
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the function that is being estimated nonparametrically. Such conditions formally justify the
use of bias-reducing nonparametric estimators, such as higher-order local polynomial regres-
sion. However, in practice the properties of the resulting STS estimators are often poorly
approximated by the corresponding asymptotic theory (e.g. Robins and Ritov, 1997).

Due to its special robustness property, the EIF estimator can achieve
√
n-consistency and

asymptotically normality under much weaker conditions the nonparametrically estimated nui-
sance function. Specifically, it only requires that the stochastic part, but not the bias, of the
nonparametric component converges to zero, and this rate can be arbitrary small. Allowing
for a slowly converging and possibly inconsistent nonparametric component is possible in
our setup because the structure of the efficient influence function removes the influence of
first stage bias on the final estimator. Randomized assignment thus effectively ensures that
efficient estimation can be carried out without any higher-order differentiability conditions.

The remainder of the paper is structured as follows. In the following section, we introduce
the model and our proposed estimation procedure. In Section 3, we derive its theoretical
properties under general conditions, and propose a simple method for inference. Sections 4
and 5 specifically consider parametric and nonparametric covariate adjustments, respectively.
Section 6 presents some simulation results, and Section 7 contains an empirical illustration.
Finally, Section 8 concludes. All proofs are collected in the Appendix.

2. SETUP

This section describes the model, reviews some results on efficiency bounds for treatment
effect estimation, and introduces the proposed estimation procedure.

2.1. Model. In our model, the researcher observes an i.i.d. random sample {(Yi, Ti, Xi)}ni=1

of n units from a large population. Here Yi ∈ Y ⊂ R is the outcome variable, Ti ∈ {0, 1} is a
treatment indicator, with Ti = 1 if unit i is treated and Ti = 0 otherwise, and Xi ∈ X ⊂ Rd

is a vector of pre-treatment covariates. Each unit also has potential outcomes Yi(1) and Yi(0)
with and without receiving the treatment, respectively, so that Yi = Yi(Ti). The parameter
of interest is the population average treatment effect

τ = E(Yi(1)− Yi(0)).

We consider a class of randomized experiments in which unit i is assigned to the treatment
group independent of its potential outcomes with probability π(Xi), where π(x) = P (Ti =

1|Xi = x) ∈ (ϵ, 1− ϵ) for some constant ϵ > 0 is the propensity score function chosen by the
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analyst.3 With this structure, we have that

(Yi(1), Yi(0))⊥Ti|Xi, (2.1)

In practice, the choice of the propensity score function is typically guided by concerns about
statistical efficiency (outcomes could be less variable among units with certain covariate
values), data collection costs (the cost of sampling units could be related to their covariate
values), and practical feasibility (implementing an experiment could be easier if the propen-
sity score function is “simple”, in the sense that it only varies with a few of the covariates,
and only takes on a small number of distinct values). However, its exact form does not
affect the analysis in this paper: the results in the following sections all hold irrespective
of whether the propensity score function is constant, a simple step function of a only a few
covariates, or a highly complex function of all covariates in the model.

2.2. Efficiency Bounds. The setup described above is formally equivalent to a treatment
effect model with unconfounded assignment and a known propensity score. Such models have
been studied extensively, and we can use existing results to determine the efficiency bound
for estimating τ . Let µ(t, x) = E(Yi|Ti = t,Xi = x) and σ2(t, x) = Var(Yi|Ti = t,Xi = x) be
the conditional expectation and the conditional variance function, respectively, of Yi given
Ti = t and Xi = x. Hahn (1998) shows that under Assumption (2.1) the asymptotic variance
of any regular estimator of τ is bounded from below by

Veff = E
(
σ2(1, Xi)

π(Xi)
+

σ2(0, Xi)

1− π(Xi)
+ (µ(1, Xi)− µ(0, Xi)− τ)2

)
,

and that any regular estimator of τ whose asymptotic variance achieves this efficiency bound
is equal to n−1

∑n
i=1 ψi(µ) + oP (n

−1/2), where

ψi(µ) = µ(1, Xi)− µ(0, Xi) +
Ti(Yi − µ(1, Xi))

π(Xi)
− (1− Ti)(Yi − µ(0, Xi))

1− π(Xi)

is the efficient influence function (EIF) for estimating τ . Our notation ψi(µ) emphasizes
the fact that the only component of this quantity that is not observed by the analyst is the
conditional expectation function µ. Note that Veff = Var(ψi(µ)) by construction.

3Assuming that the propensity score is bounded away from zero and one ensures the existence of a regular
estimator of τ (Khan and Tamer, 2010). Since the propensity score is chosen by the analyst, this condition
is easy to fulfill.
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2.3. Some Existing Estimators. A simple and widely used estimator of τ is the “difference-
in-means” estimator τ̂unadj, which is simply the unadjusted difference in weighted average
outcomes among treated and untreated units, with unit i being weighted with its inverse
treatment probability 1/(π(Xi)Ti+(1−π(Xi))(1−Ti)). This estimator can of course also be
obtained by running an weighted least squares regression of the outcome on the treatment
indicator and an intercept:

Ŷi = α̂ + τ̂unadjTi.

While the “difference-in-means” estimator is unbiased and consistent under general condi-
tions, it is generally not efficient since it does not exploit the information contained in the
covariates. Its variance is easily improved, however, by augmenting the regression with a
linear term in the covariates, yielding the “linear regression adjusted” estimator τ̂reg:

Ŷi = α̂ + τ̂regTi + β̂′Xi.

Further improvements can be obtained by also including interactions between the covariates
and the treatment indicator, yielding the estimator τ̂reg-int:

Ŷi = α̂ + τ̂reg-intTi + β̂′Xi + γ̂′XiTi.

It follows from standard regression theory that τ̂reg and τ̂reg-int are both unbiased and
consistent for τ irrespective of whether the respective linear regression model constitutes a
correct specification of the conditional expectation function µ(t, x) or not.4 While the asymp-
totic variance of τ̂reg and τ̂reg-int generally does not achieve the efficient bound, robustness
against misspecification makes these procedures attractive for empirical applications.

A more general class of estimators which incorporates the covariate data proceeds by
postulating some specification of the conditional expectation function µ, and then gener-
ating some appropriate estimate µ̂. This could be a parametric specification of µ that is
estimated by methods like (weighted) least squares or maximum likelihood, or a nonpara-
metric specification estimated by methods like local linear or series regression. Irrespective
of which procedure is used by the researcher, the resulting “covariate-adjusted” estimator of

4For illustration, consider the special case that the propensity score function is constant. Then Ti and
Xi are stochastically independent, and it follows from standard “omitted variable bias” calculations that the
expectation of τ̂reg and τ̂reg-int is the same as that of τ̂unadj, and the latter is clearly an unbiased estimator of
τ . We recall from footnote 1 that the general setup of papers that find a bias for linear regression adjustments
is different from ours.
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τ is given by

τ̂adj =
1

n

n∑
i=1

(µ̂(1, Xi)− µ̂(0, Xi)) .

This class of estimators contains τ̂unadj, τ̂reg and τ̂reg-int as special cases when µ̂ is the least
squares fit of the specification µ(t, x) = β0 + β1t, µ(t, x) = β0 + β1t + β′

2x, and µ(t, x) =

β0 + β1t + β′
2x + β3xt, respectively. In general, however, there is no reason to expect τ̂adj

to be unbiased or even consistent. Indeed, consistency of τ̂adj generally requires consistent
estimation of the conditional expectation function µ. If the outcome is binary, for example,
it would be natural to consider a Logit specification like µ(t, x) = Λ(β0 + β1t+ β′

2x), where
Λ denotes the cumulative distribution function of the Logistic distribution, and estimate
the unknown parameters by Maximum Likelihood. If the Logistic model is misspecified,
however, resulting estimate Λ(β̂0 + β̂1t + β̂′

2x) is generally not consistent for µ, and the
resulting treatment effect estimator τ̂adj is inconsistent as well.

Issues of misspecification can in principle be overcome by using some form of nonpara-
metric regression to estimate µ, which yields consistent and efficient estimates of τ under
appropriate regularity conditions. The problem is that versions of τ̂adj based on such esti-
mates can still be severely biased in finite samples, and exhibit stochastic behavior that is
not well approximated by conventional first-order asymptotic theory (Imbens et al., 2007),
especially if the number of covariates is large. For these reasons, nonparametric covariate
adjustments are hardly used in practice.

2.4. The Efficient Influence Function Estimator. In this paper, we study the properties
of so-called EIF estimators of τ , which take the form of the sample average of an empirical
analogue the efficient influence function:

τ̂ =
1

n

n∑
i=1

ψi(µ̂),

where again µ̂ is a generic estimate of the conditional expectation function µ. Such estimators
can be interpreted as “corrected” versions of τ̂adj, in the sense that

τ̂ = τ̂adj +
1

n

n∑
i=1

(
Ti(Yi − µ̂(1, Xi))

π(Xi)
− (1− Ti)(Yi − µ̂(0, Xi))

1− π(Xi)

)
.

EIF estimators are very similar to doubly robust estimators from the literature on treat-
ment effect estimation under unconfounded assignment (e.g. Robins et al., 1995; Robins and
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Rotnitzky, 2001; Van der Laan and Robins, 2003; Bang and Robins, 2005; Farrell, 2015).
The main difference is that for doubly robust estimation the known propensity score values
are replaced with appropriate estimates (this is necessary under unconfoundedness to make
the estimator feasible, since the propensity score function is unknown in such setups).

EIF estimators are also related to the class of estimators based on a moment condition
that satisfies a so-called Neyman orthogonality condition with respect to an unknown nui-
sance function. Such estimators were studied, for example, by Belloni et al. (2017) and
Chernozhukov et al. (2018a). In our context, Neyman orthogonality means that the ex-
pected EIF is first-order insensitive to changes in the conditional expectation function µ, in
the sense that

∂1m [E(ψi(m))]m=µ = 0,

where ∂km is a kth order functional derivative operator with respect to m restricted to di-
rections of possible deviations µ̂ from µ. Since our EIF clearly satisfies this condition, one
could in principle use results from Belloni et al. (2017) or Chernozhukov et al. (2018a) to
derive properties of τ̂ .

In our context of a randomized experiment, however, the expected EIF satisfies a much
stronger robustness property than Neyman orthogonality. Simple algebra shows that in fact
E(ψi(m)) = τ for any non-random function m, and thus not only the first but also all higher
order functional derivatives vanish:

∂km [E(ψi(m))]m=µ = 0 for all k ∈ N.

This stronger robustness property has important consequences for the types of results we are
able to derive in this paper. In particular, it means that we can expect τ̂ to be

√
n-consistent

for τ and asymptotically normal even if µ̂ converges arbitrarily slowly to some probability
limit µ̄ that may even be different from the true function µ. In contrast, consistency of µ̂ for µ
and a rate of o(n−1/4) would be required if only Neyman orthogonality holds (Chernozhukov
et al., 2018a).

With the stronger robustness property, it holds that
√
n(τ̂−τ) ≈ (1/

√
n)
∑n

i=1(ψi(µ̄)−τ)
in large samples with very high accuracy under rather weak restrictions on the estimator µ̂.
This in turn implies that τ̂ is approximately unbiased for τ ,

√
n-consistent and asymptotically

normal with limiting variance Var(ψi(µ̄)), and fully efficient if µ̂ consistently estimates µ; i.e.
if µ̄ = µ. Moreover, it means that the sample variance of the ψi(µ̂) is a natural estimate of
Var(ψi(µ̄)); and that this estimate can be used to construct confidence intervals for τ that
are valid irrespective of whether µ̄ = µ. We formalize this reasoning in the next section.
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3. THEORETICAL RESULTS

In this section, we formally study the properties of the estimator τ̂ under general conditions
on the properties of the estimator µ̂. We also propose methods to estimate the asymptotic
variance, and to conduct inference.

3.1. Regularity Conditions. The following notation is helpful for presenting our regularity
conditions. For any class of functions M over {0, 1} × X , let N2(ϵ,M) be the minimum
number of ϵ-brackets with respect to the L2(P ) norm needed to cover M, where for two
functions u, l ∈ M the set {f ∈ M : l(t, x) ≤ f(t, x) ≤ u(t, x) for all (t, x)} is called an
ϵ-bracket with respect to L2(P ) if E((l(Ti, Xi)− u(Ti, Xi))

2) < ϵ2. We also write a(η) . b(η)

for generic functions a and b if a(η) ≤ Cb(η) for some constant C not depending on η. All
limits are taken as n→ ∞. We impose two “high level” assumptions about the estimator µ̂.

Assumption 1. There exists a sequence µn of non-random functions, a non-random function
µ̄, and sequences an = o(1) and bn = o(1) of constants such that ∥µ̂ − µn∥∞ = OP (an) and
∥µn − µ̄∥∞ = O(bn).

The idea behind this assumption is to choose µ̄ as the probability limit of µ̂, and to define
the function µn as the sum of µ̄ and the asymptotic bias of the respective estimator µ̂ with
respect to µ̄. Put differently, the idea is to choose µn such that µ̂−µn is approximately mean
zero. Proceeding like this allows, but does not require, µ̂ to be a consistent estimator of µ
since is possible, but not necessary, that µ̄ = µ. With such choices of µ̄ and µn, Assumption 1
simply requires that the stochastic part and the bias of µ̂ converge to zero uniformly. It also
denotes the corresponding rates by an and bn, respectively. Uniform convergence results
for nonparametric regression estimators are widely available in the literature; see e.g. Newey
(1997) for series estimators and Masry (1996) for local polynomial regression. For parametric
models, such results generally follow if µ̂ is not “too volatile” in the estimated parameter
(Andrews, 1992).

Assumption 2. There exists a sequence Mn of function classes such that P (µ̂−µn ∈ Mn) =

1 + o(1) and N2(ϵ,M∗
n) . exp(ϵ−αcn) for α ∈ (0, 2), a sequence of constants cn = o(aα−2

n ),
and all ϵ < an, where M∗

n = Mn ∩ {m ∈ Mn : ∥m− µn∥∞ ≤ an}.

This assumption states that the estimator µ̂ takes values in a function class whose entropy
with bracketing, which is defined as the natural logarithm of the covering number, does
not grow too quickly as the sample size increases. Entropy restrictions of this type are
commonly found in the literature on semiparametric two-step estimation. They ensure that
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the estimator µ̂ does not overfit the data by requiring that it takes values in a class whose
elements cannot be “too complex” (see e.g. van der Vaart (1998) for further details on the
interpretation of restrictions on covering numbers). The presence of the sequence cn allows
for function classes whose complexity increases with the sample size. For most nonparametric
estimators, it is natural to take Mn as a smoothness class, such as that of functions with
bounded partial derivatives up to a particular order. Alternatively, one could also take Mn

as the sum of one potentially non-smooth function and other functions from a smoothness
class. This allows dealing with settings where the bias of µ̂ is not a smooth function itself.
For parametric models, the assumption again intuitively requires that µ̂ is not “too volatile”
in the estimated parameter, in some appropriate sense.

We discuss explicit “low level” conditions under which Assumption 1–2 are satisfied for
conventional parametric and nonparametric methods in Sections 4 and 5 below, respectively.
For the moment, we would like to stress two important points. First, our two assumptions
only restrict the rate an at which the stochastic component of µ̂ tends to zero, but not
the rate bn of the bias component. In our setup the estimator µ̂ can therefore not only
be inconsistent for µ; it is also allowed to have an arbitrarily slowly vanishing asymptotic
bias. Second, while our analysis is geared towards classical parametric and nonparametric
estimation procedures for µ, our setup allows for all kinds of estimators µ̂. In particular, our
assumptions in principle allow for estimators of µ based data dependent model specifications,
or data dependent choices of tuning parameters, including those of the type used in modern
machine learning methods. In order to satisfy our Assumptions 1–2, such data dependencies
cannot be arbitrary, however, but have to be subject to sufficient “discipline”. See Benkeser
and Van Der Laan (2016) and Van Der Laan and Bibau (2017), for example, for conditions
under which entropy and uniform convergence results hold for LASSO-type estimators.

3.2. Treatment Effect Estimation. Our main result regarding the properties of the EIF
estimator is the following bound on the difference between

√
n(τ̂ − τ) and its asymptotically

linear representation, which is obtained using techniques from empirical process theory.

Theorem 1. Suppose that Assumptions 1–2 hold. Then

√
n(τ̂ − τ) =

1√
n

n∑
i=1

(ψi(µ̄)− τ) +OP (c
1/2
n a1−α/2

n ) +OP (bn). (3.1)

Moreover, the term of order OP (bn) in the previous equation has mean zero.

The result in Theorem 1 is general in the sense that it is valid for any estimator µ̂,
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including hypothetical or infeasible ones, as long as they satisfy the assumed high-level
regularity conditions. If a specific estimator of µ is considered, the result of this theorem
can potentially be improved by exploiting special features of the respective procedure. We
illustrate this point in the context of local linear regression in Section 5. A direct implication
of Theorem 1 is the following result.

Corollary 1. Suppose that Assumptions 1–2 hold. Then (i)
√
n(τ̂ − τ)

d→ N(0,Var(ψi(µ̄)));
and (ii) Var(ψi(µ̄)) = Veff if µ̄ = µ.

The corollary shows that under our regularity conditions τ̂ is
√
n-consistent for τ , asymp-

totically normal, and asymptotically unbiased, irrespective of whether µ̂ consistently esti-
mates µ. Moreover, it shows that the asymptotic variance of τ̂ reaches the efficiency bound
Veff if µ̂ consistently estimates µ, irrespective of the exact estimation procedure that is used
to construct µ̂.

This result differs from other asymptotic normality results for estimators of a finite-
dimensional parameter that depend on flexible, possibly nonparametric estimates of a nui-
sance function, as it does not require any restrictions on the rate bn at which the bias of
µ̂ tends to zero. While the details depend on the exact specification, generally speaking
this means that we can satisfy Assumptions 1–2 by choosing an estimator µ̂ that suffi-
ciently “over-smooths”, or “over-regularizes”, the data. This is because for all commonly
used estimation procedures increased regularization speeds up the rate of convergence of the
stochastic part and decreases the “complexity” of the estimated function.5 On the other
hand,

√
n-consistency and asymptotic normality of a generic estimator that depends on a

flexibly estimated nuisance function often requires that the stochastic part and the bias of
the estimated nuisance function are of smaller order than n−1/4. As pointed out for example
by Linton (1995) or Robins and Ritov (1997), asymptotic approximations to the distribu-
tion of some estimator that rely on the assumption of a very accurately estimated nuisance
function can be fragile in practice. The fact that τ̂ does not require such conditions makes
it attractive for empirical work.

3.3. Variance Estimation and Confidence Intervals. For empirical practice, it is im-
portant to obtain a consistent estimate of the asymptotic variance of τ̂ , since this can be
transformed into valid standard errors and confidence intervals for the parameter of interest.

5To see this, consider the case of classical nonparametric regression models. With local polynomial
regression, for example, increasing the bandwidth decreases the variance and leads to a more regular estimate.
Similarly, the variance of a series estimator decreases if a smaller number of series terms is chosen, and the
complexity of the estimated function is being reduced.
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Since Var(ψi(µ̄)) = E((ψi(µ̄)− τ)2), the natural estimate of the asymptotic variance of τ̂ is

V̂ =
1

n

n∑
i=1

(ψi(µ̂)− τ̂)2,

irrespective of how µ̂ is obtained. This variance estimate is straightforward to compute, as
it does not require estimating any additional nuisance parameters. It can be shown to be
consistent under the conditions of Theorem 1. Together with the asymptotic normality result
in Corollary 1, this then implies the validity of standard large sample methods for inference.
In particular, it means that a confidence interval for τ with asymptotic coverage 1 − α is
given by

C1−α =

(
τ̂ ± q1−α ×

√
V̂ /n

)
,

where q1−α = Φ−1(1−α/2) with Φ−1(·) the standard normal quantile function is the critical
value. The following corollary formally states these results.

Corollary 2. Suppose that Assumptions 1–2 hold. Then (i) V̂ = Var(ψi(µ̄)) + oP (1); (ii)
P (τ ∈ C1−α) = 1− α + o(1); and (iii) P (τ̄ ∈ C1−α) = o(1) for all τ̄ ̸= τ .

3.4. Leave-One-Out Estimation. An interesting variant of the estimator τ̂ is one where
for t = 0, 1 the estimate of µ(t,Xi) is computed without using the ith data point. Denoting
the corresponding estimator by µ̂(−i)(t,Xi), the resulting “leave-one-out” EIF estimator is

τ̂loo =
1

n

n∑
i=1

ψi(µ̂(−i)).

Leave-one-out estimation is well-known to reduce the risk of over-fitting the data, and to
reduce bias, in various contexts (e.g. Powell et al., 1989). To show their usefulness for the
present setup, assume that

E(µ̂(−i)(t, x)|Yi, Ti, Xi) = µn(t, x) (3.2)

exists, is finite, and non-random, for t = 0, 1 and i = 1, . . . , n. Then, by the law of iterated
expectations and the linearity of the efficient influence function ψi(µ) in µ, we have that

E(τ̂loo) = E(ψi(µn)) = τ,
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which means that τ̂loo is exactly unbiased.6 The following corollary shows that under a
weak regularity condition, which basically states that one must be able to interpolate the
estimates µ̂(−i)(t,Xi) with a sufficiently regular function, the conclusions of Theorem 1 hold
for “leave-one-out” treatment effect estimation as well.

Corollary 3. Suppose there exists a function µ̂ that satisfies Assumption 1–2, and is such
that µ̂(t,Xi) = µ̂(−i)(t,Xi) for t = 0, 1 and i = 1, . . . , n. Then the conclusion of Theorem 1
holds with τ̂loo replacing τ̂ .

3.5. The Value of Knowing the Propensity Score. We end this section by remarking
that our results have some implications for our understanding of treatment effect estimation
from observational (non-experimental) data. Recall that the framework used in this paper
is formally equivalent to a canonical treatment effect setup with unconfounded assignment
and a known propensity score (cf. Imbens, 2004). Knowledge of the propensity score does
not affect the efficiency bound for estimating the average treatment effect under unconfound-
edness, and efficient estimation is in principle possible if such knowledge is simply ignored
(Hahn, 1998). On thus sometimes encounters the opinion that knowledge of the propensity
score is not particularly valuable in such applications from a statistical point of view.

The results in this paper show, however, that knowledge of the propensity score makes it
possible to construct estimators that achieve the efficiency bound under substantially weaker
regularity conditions, and have superior finite-sample properties, relative to estimators that
ignore such knowledge. These improvements can be interpreted as the value of knowing the
propensity score in applications with unconfounded treatment assignment.

4. PARAMETRIC COVARIATE ADJUSTMENTS

In this section, we give primitive conditions under which our Assumptions 1–2 are satisfied
when µ̂ is a parametric estimation procedure. Suppose that the researcher uses the specifica-
tion µ(t, x) = mθ(t, x), where mθ is a function that is known up θ ∈ Θ ⊂ Rs for some s ∈ N.
This specification may be correct or incorrect. That is, there may or may not be some θ ∈ Θ

such that µ = mθ. Also put µ̂ = mθ̂, where θ̂ ∈ Θ is some estimator. We then impose the
following regularity condition.

Assumption 3. (i) The function mθ(t, x) is such that |mθ1(t, x)−mθ2(t, x)| ≤ h(t, x)∥θ1−θ2∥
for all θ1, θ2 ∈ Θ and some function h with E(|h(Ti, Xi)|2) <∞; (ii) there exists θ∗ ∈ Θ and

6For many estimators the expectation in (3.2) does formally not exist. In this case we can obtain an
analogous “conditional unbiasedness” result by assuming that the conditional expectation of µ̂(−i)(t, x) given
all treatment assignments and covariates values exists.
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a deterministic sequence θ∗n taking values in Θ such that ∥θ̂− θ∗n∥ = OP (an) and ∥θ∗n− θ∗∥ =

O(bn) for an = o(1) and bn = o(1).

The first part of this assumption is a continuity condition on the candidate functions
for µ with respect to the unknown parameter; and the second part prescribes that θ̂ has a
non-random probability limit, and that its stochastic and bias component vanish with rate
an and bn, respectively. This structure covers most parametric procedures that are typically
used for estimating conditional expectation functions in practice. Examples include Ordinary
Least Squares (OLS) estimates of linear regression models, and Maximum Likelihood (ML)
estimates of Probit/Logit specifications in the case of a binary outcome variable. Note that
the assumption does not require that µ̂ = mθ̂ is a consistent estimator of µ, but only that
it converges to a fixed probability limit mθ∗ . The assumption also allows for parameter
estimators with “irregular” rates of convergence, i.e. ones that differ from the usual rate of
n−1/2, as it only requires that θ̂ is consistent for some θ∗.

Corollary 4. Suppose that Assumption 3 holds. Then Assumptions 1–2 are satisfied with
Mn = {mθ(t, x) : θ ∈ Θ}, µ̄ = mθ∗, µn = mθ∗n, cn = 1, and α > 0 arbitrarily small.

Through a minor variation of the proof of Theorem 1, one can show that its conclusion
also holds under the conditions of Corollary 4 with α = 0; see the appendix for details. This
implies that the difference between

√
n(τ̂−τ) and its asymptotically linear representation is of

the same order as the rate at which θ̂ approaches θ∗. That is, since ∥θ̂−θ∗∥ = OP (an)+O(bn)

under our assumptions, it holds that

√
n(τ̂ − τ) =

1√
n

n∑
i=1

(ψi(µ̄)− τ) +OP (∥θ̂ − θ∗∥).

In the most widely used parametric models one can typically choose θ∗n such that ∥θ̂− θ∗n∥ =

OP (n
−1/2) and ∥θ∗n − θ∗∥ = O(n−1) under standard conditions, but, as mentioned above,

setups with slower converging parametric estimators exist.

5. NONPARAMETRIC COVARIATE ADJUSTMENTS

In this section, we give primitive conditions under which our Assumptions 1–2 are satisfied
when µ̂ is obtained by classical nonparametric regression techniques. For concreteness, we
focus on the case of local linear regression; but similar results can be obtained for other
methods, such as series regression. We also illustrate how direct arguments can be used to
derive results that improve upon the general finding of Theorem 1.

14



5.1. Notation and Assumptions. Local linear regression Fan and Gijbels (1996) is a class
of kernel-based smoothers. It is well-known to have attractive bias properties relative to other
kernel-based methods, such as the Nadaraya-Watson estimator. We use the following nota-
tion. Let K be a univariate probability density function, and put Kh(b) =

∏d
j=1 K(bj/h)/h

for any bandwidth h ∈ R+. Then the local linear estimator µ̂(t, x) of µ(t, x) is given by the
first component of

(µ̂(t, x), β̂(t, x)) = argmin
(m,b)

n∑
j=1

(Yj −m− b′(Xj − x))
2
Kh(Xj − x)1{Tj = t}.

Note that we are using the same bandwidth for each component of the covariate vector Xi

for notational convenience only, and that more general bandwidth choices are possible. The
following assumption collects some regularity conditions that are standard in the literature
on local linear regression.

Assumption 4. (i) Xi is continuously distributed given Ti = t with compact and con-
vex support X ⊂ Rd for t = 0, 1; (ii) the corresponding conditional density functions are
bounded, have bounded first order derivatives, and are bounded away from zero, uniformly
over the respective support; (iii) µ(t, ·) is twice continuously differentiable for t = 0, 1; (iv)
supx E(|Yi|2+δ|Ti = t,X = x) < ∞ for some constant δ > 0 and t = 0, 1; (v) the ker-
nel K is l times continuously differentiable, and such that

∫
K(u)du = 1,

∫
uK(u)du = 0,∫

|u2K(u)|du <∞, and K(u) = 0 for u not contained in some compact set.

5.2. Application of General Results. Let M(l, cn) be the collection of all functions m
defined over {0, 1}×X such that the partial derivatives of m(t, ·) up to order l are uniformly
bounded by cn for t = 0, 1. We then have the following result.

Corollary 5. Suppose that Assumption 4 holds with l > max{1, d/2}, and that h ∝ n−θ with

0 < θ <
3− d/l

(3 + 2l − d/l)d
.

Then Assumptions 1–2 are satisfied with Mn = M(l, cn), α = d/l, an = (nhd/ log(n))−1/2,
bn = h2, and cn = (nhd(1+2l)/ log(n))−1/2.

The corollary implies that τ̂ reaches the efficiency bound with local linear covariate
adjustments if the bandwidth h does not tend to zero too quickly. Since the bandwidth
is allowed to vanish arbitrarily slowly, asymptotic efficiency can always be achieved (in the
next subsection, we show that one can actually allow for a wider range of bandwidth values
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than suggested by the corollary by exploiting the structure of the local linear regression
estimator). Note that Corollary 5 only requires that the kernel function K has derivatives
up to some order that increases with the number of covariates. This condition ensures that
µ̂ is sufficiently often differentiable for taking values in M(l, cn) with high probability. No
higher-order differentiability conditions on µ are needed, as it is not necessary for our results
that the bias of µ̂ vanishes quickly. This differs markedly from generic STS estimators, which
typically require higher-order differentiability conditions on the respective nuisance function
in settings with many covariates in order to justify the use of methods that control the
magnitude of the asymptotic bias of the respective nonparametric estimate.

5.3. Improved Results Using Direct Arguments. It is possible to improve upon the
result of Corollary 5 and Theorem 1 in the present context by using direct arguments that
exploit the specific structure of the local linear estimator. Consider the leave-one-out (LOO)
version of the treatment effect estimator, which uses an estimate of µ that uses every obser-
vation but the ith in order to estimate µ(t,Xi), for t = 0, 1. Specifically, let

τ̂loo =
1

n

n∑
i=1

ψi(µ̂(−i))

where, for i = 1, . . . , n and t = 0, 1, the estimator µ̂(−i)(t,Xi) is the first component of

(µ̂(−i)(t,Xi), β̂(−i)(t,Xi)) = argmin
(m,b)

n∑
j=1,j ̸=i

(Yj −m− b′(Xj − x))
2
Kh(Xj − x)1{Tj = t}.

Using results in Rothe and Firpo (2019), we then obtain the following result regarding the
properties of the corresponding treatment effect estimator.

Corollary 6. Suppose that Assumption 4 holds with l = 2. Then

√
n(τ̂loo − τ) =

1√
n

n∑
i=1

(ψi(µ)− τ) +OP (h
2) +OP (n

−1/2h−d/2)

+OP (log(n)
3/2n−1h−3d/2).

(5.1)

Moreover, if h ∝ n−θ with 0 < θ < 2/(3d), then
√
n(τ̂ − τ)

d→ N(0, Veff).

This result shows that the treatment effect estimator reaches the efficiency bound for a
much wider range of bandwidths than those found using our general result in the previous
subsection. Using a wider range of bandwidths is possible because the second and third
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remainder term on the right-hand-side of (5.1) are substantially smaller than their counter-
part under Theorem 1. 7 Using a “leave-one-out” estimator is of particular importance for
obtaining this result. With a “leave-in” version of the local linear regression estimator, there
would be an additional term of order OP (n

−1/2h−d) on the right-hand side of equation (5.1).
Note that long as d < 8, the estimator τ̂loo is

√
n-consistent if we choose h ∝ n1/(4+d). Such

a choice minimizes the order of the integrated mean squared error of µ̂(−i), and hence a
bandwidth satisfying this property can be estimated via cross-validation.

6. SIMULATIONS

In this section, we study the finite sample properties of the EIF estimator τ̂ through a
Monte Carlo experiment, and compare them to those of other treatment effect estimators.
Our aim is to illustrate that the theoretical results obtained above provide a realistic picture
of the behavior of the EIF estimator in practice. For simplicity, we focus on the case of
nonparametric covariate adjustments via local linear regression. We simulate the potential
outcomes as Y (1) = λ(X1, . . . , X5)+2 cos(πX1X2)+ε1 and Y (0) = λ(X5, . . . , X1)+ε0. Here
λ(a) = sin(πa1a2) + (a3 + a4 − 1)2 + a5/2, the covariates X = (X1, . . . X5) are independent
random variables following uniform distributions on [0, 1], and the error terms (ε1, ε0) are
independent of each other and the covariates, normally distributed with mean 0 and standard
deviation 1/5. We also simulate the treatment indicator T independently of covariates and
potential outcomes as equal to one with probability 1/2. These choices imply that τ ≈ .589

and Veff ≈ 1.205 for our data generating process.
We then consider the sample sizes n = 100, 200, 400, 800; and compare the performance

of the following procedures: (i) a simple difference-in-means estimator, (ii) conventional
linear regression adjustments, (iii) “direct” nonparametric covariate adjustments (i.e., the
estimator τ̂adj), and (iv) nonparametric covariate adjustments through the efficient influence
function (i.e., the EIF estimator τ̂). For the last two estimators, nonparametric covariate
adjustments are carried out via leave-one-out local linear regression.8 We also consider two

7An inspection of the proof of Corollary 6 shows that the first two second-order terms on right-hand side
of (5.1) have mean zero, which is in line with the argument in Section 3.4. The orders of magnitude of these
two terms are the same as those of the asymptotic bias and the pointwise asymptotic standard deviation of
µ̂(−i), respectively. The final term on the right-hand side of (5.1) is due to presence of the inverse of the
estimated (local) second moments of the covariates in the explicit expression of the local linear regression
estimator. We conjecture that the reminder rate given in Corollary 6 is actually not sharp. However, in view
of Rothe and Firpo (2019), improving the rate would require lots of tedious calculations, and hence we do
not investigate this issue any further here.

8We also considered the properties of estimators based on conventional “leave-in” local linear regression.
This did not affect the empirical bias and variance properties of τ̂adj and τ̂ in a meaningful way, but lead to
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different methods for choosing the bandwidths, namely leave-one-out cross-validation and
“fixed” bandwidths of the form sd(Xj)n

−1/(4+dim(X)) for the jth covariate. Both choices are
permissible for the EIF estimator under our theoretical results derived above. We remark
that for the relatively small sample sizes we consider, adjusting for five continuous covariates
in a completely nonparametric fashion would generally be considered impractical in the
existing literature.

Table 1 presents the results of our simulation study based on 100,000 replications for each
sample size under consideration. For each estimator, we report its bias scaled by

√
n, its

variance scaled by n (so that it can easily be compared to the efficiency bound Veff ≈ 1.205),
the average value of the respective variance estimator,9 and the coverage probability of the
corresponding confidence interval with nominal level 95%.

Both the difference-in-means estimator and linear regression adjustments perform as
expected. These estimators are known to be exactly unbiased in our setup, so the non-zero
empirical bias figures reported in Table 1 are due to simulation noise. Linear regression
leads to minor reductions in variance relative to difference-in-means for the smaller sample
sizes under consideration, and a roughly 10% reduction for the larger ones. In both cases,
the resulting scaled variance still exceeds the efficiency bound. Linear regression confidence
intervals show a minor deviation from nominal coverage for n = 100, but are correct up to
simulation noise for the larger sample sizes.

Direct nonparametric covariate adjustments turn out to be substantially biased for both
cross-validation and fixed bandwidths. With cross-validation bandwidths, the scaled bias
is roughly constant over the various sample sizes under consideration, whereas for fixed
bandwidths it increases with the sample size. Sampling variability is generally below that of
linear regression adjustments, and improves substantially with the sample size. For n = 800,
the variance of the estimator with cross-validation only exceeds the efficiency bound by about
6%. However, the corresponding variance estimator tends to be downward biased, which
together with the bias issues leads to confidence intervals that undercover the parameter
of interest. These problems illustrate why direct nonparametric covariate adjustments are
rarely used in the context of randomized experiments.

In contrast, the modified treatment effect estimator based on the efficient influence func-

downward-biased estimates of the corresponding variance in smaller samples, and thus to under-coverage of
the corresponding confidence intervals.

9We use the HC1 heteroscedasticity-robust variance estimator for linear regression adjustments, and the es-
timator V̂ described above for both the “direct” nonparametric covariate adjustments and the EIF estimator.
The latter choice is appropriate since both estimators have the same asymptotically linear representation.
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Table 1: Simulation results
√
n×Bias n×Variance

n DIM LR DNP-cv EIF-cv DNP-fix EIF-fix DIM LR DNP-cv EIF-cv DNP-fix EIF-fix
100 .002 .015 .442 .022 .519 .007 2.074 2.015 1.783 1.545 2.297 1.764
200 .002 .007 .490 .021 .679 .007 2.066 1.929 1.501 1.377 1.822 1.499
400 .005 .013 .466 .001 .818 .004 2.049 1.882 1.352 1.291 1.548 1.367
800 .001 .006 .455 .001 .992 .003 2.045 1.849 1.279 1.260 1.399 1.297

Avg Variance Estimate CI Coverage Probability
n DIM LR DNP-cv EIF-cv DNP-fix EIF-fix DIM LR DNP-cv EIF-cv DNP-fix EIF-fix

100 2.069 2.001 1.408 1.408 1.664 1.664 .938 .937 .905 .931 .888 .936
200 2.057 1.920 1.325 1.276 1.450 1.450 .945 .945 .919 .942 .889 .943
400 2.052 1.879 1.279 1.247 1.348 1.348 .947 .947 .928 .947 .881 .947
800 2.050 1.859 1.256 1.231 1.296 1.296 .949 .948 .931 .948 .856 .949

Results for difference-in-means estimator (DIM), linear regression adjustments (LR), “direct” nonparametric covariate adjustments
with cross-validation and “fixed” bandwidth (DNP-cv and DNP-fix), and nonparametric covariate adjustments through the efficient
influence function with cross-validation and “fixed” bandwidth (EIF-cv and EIF-fix); based on 100,000 replications.
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Table 2: Summary Statistics
Full Sample Treated Only Control Only

Mean SD Mean SD Mean SD
Post-Program Earnings 16093 17070 16487 17390 15310 16392
Pre-Program Earnings 3233 4264 3205 4279 3287 4234
Age in Years 33.20 9.64 33.14 9.60 33.28 9.74
Years of Education 11.61 1.87 11.62 1.87 11.58 1.88
Sex (1 =male) .53 .49 .53 .49 0.53 .49
Assignment (1 =treatment) .66 .47

Number of Observations 9,223 6,133 3,090

tion performs very well with either cross-validation or fixed bandwidths. The reported bias
figures are very close to those of the difference-in-means estimator and linear regression
adjustments, which we know are exactly unbiased. The variance is well-below that of the
other estimators we consider here for all sample sizes, and gets very close to the efficiency
bound for n = 800. Moreover, with the exception of a small deviation for n = 100, the corre-
sponding variance estimator accurately captures the finite-sample variance, and the resulting
confidence intervals have excellent coverage.

Overall, the simulation results confirm that the theoretical results in this paper provide a
realistic approximation to the EIF estimator’s finite-sample properties even in settings with
multiple continuously distributed covariates and relatively small sample sizes.

7. EMPIRICAL ILLUSTRATION

We illustrate the implementation of flexible covariate adjustments in randomized experiments
by applying them to data from National Job Training Partnership Act (JTPA) Study. A
detailed description the study’s design and findings is given by Bloom et al. (1997). The
study randomly assigned applicants into a treatment and a control group, with the treatment
group being eligible to receive a mix of training, job-search assistance, and other services
provided by the JTPA for a period of 18 months. The probability of being assigned to the
treatment group was equal to 2/3, and independent of any covariates. The study collected
background information on the applicants prior to random assignment, as well as data on
applicants’ earnings in the 30-month period following the assignment.

The sample that we use in this paper contains 9,223 individuals with non-missing data on
the pre-assignment covariates sex, age, years of education, and pre-program earnings; and
the primary outcome, which is earnings in the 30 months after program assignment. We
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Table 3: Estimation results
DIM LR EIF-cv EIF-fix

Point Estimate 1,176 1,234 1,229 1,244
Standard Error 369 340 339 321

Estimated effect of JTPA eligibility on earnings in the 30 months after program assignment for
difference-in-means estimator (DIM), linear regression adjustments (LR), and nonparametric co-
variate adjustments through the efficient influence function with cross-validation and “fixed” band-
width (EIF-cv and EIF-fix); based on 9,223 observations.

present some descriptive statistics for these variables in Table 2. These show, among other
things, that the covariates are well-balanced between the treatment and the control group.
We then consider the effect of program assignment on post-assignment earnings, using the
covariates to improve precision. We employ the same estimators as in our simulation study,
except for the direct nonparametric adjustment estimators that did not perform well.10

Table 3 shows the empirical results for the estimators under consideration. The base-
line difference-in-means estimator takes a value of $1,176, with a standard error of $369.
Including linear regression adjustments produces a slightly larger point estimate of $1,234,
and reduces the standard error by about 8% to $340. For the EIF estimator based on
cross-validation, we obtain a similar point estimate and standard error of $1,229 and $339,
respectively. the cross-validation algorithm produces bandwidths that are rather large in
this setup due to the large variability in outcomes.11 EIF estimation with a fixed bandwidth
then produces a point estimate $1,244 with standard error of $321, which constitutes a 4%
improvement over linear regression adjustments. While the gains from using a multivariate
nonparametric covariate adjustment are thus modest in this setup, the analysis still shows
that such adjustments are feasible in randomized experiments: they produce stable estimates
that improve upon simple methods.

8. CONCLUSIONS

This paper shows that the scope for flexible covariate adjustments in randomized experiments
is much bigger than generally considered in the empirical literature. By estimating average
treatment effects through a sample analogue of the efficient influence function, one can

10We let age, years of education and pre-program earnings enter the local linear regression in the usual
fashion, and smooth with respect to the binary variable “sex” as described in Racine and Li (2004).

11With large bandwidths local linear regression is almost identical to a global linear regression model, and
hence the numerical results for EIF estimation are similar to those for linear regression adjustments.
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improve upon linear regression adjustments in terms of efficiency without having to sacrifice
any of their robustness properties. Moreover, fully efficient estimation is possible by using
nonparametric covariate adjustments under conditions that are substantially weaker than
those generally required in the literature on semiparametric two-step estimation.

A. PROOFS

A.1. Proof of Theorem 1. Let λn(m) = n−1/2
∑n

i=1(ψi(π,m)−E(ψi(π,m))) for any generic
function m(t, x) defined over {0, 1} × X such that E(ψi(π,m)) exists and is finite. Simple
algebra shows that E(ψi(π,m)) = τ for any such generic function m(t, x), and thus λn(m) =

n−1/2
∑n

i=1(ψi(π,m)− τ). The first statement of the theorem follows from an application of
the Central Limit Theorem to λn(µ̄) if λn(µ̂) − λn(µ̄) = oP (1). By linearity, we have that
λn(µ̂) − λn(µ̄) = λn(µ̂ − µn) + λn(µn − µ̄); and Assumption 2 implies that λn(µn − µ̄) =

OP (bn) = oP (1). Next, for any fixed m∗ ∈ M∗
n and any ϵ > 0 it holds that

P (|λn(m∗)| > ϵ) ≤ 1

ϵ
sup

m∈M∗
n

E(|λn(m)|)

. 1

ϵ

∫ an

0

√
log(N2(s,M∗

n))ds

=
a
1−α/2
n c

1/2
n

ϵ
,

using Markov’s inequality, the maximal inequality in Corollary 19.35 in van der Vaart (1998),
and our Assumption 2. Assumption 1 and 2 together also imply that P (µ̂ − µn ∈ M∗

n) =

1 + o(1), and thus we find that λn(µ̂− µn) = OP (a
1−α/2
n c

1/2
n ) = oP (1), since cn = o(aα−2

n ) by
Assumption 3. Taken together, we thus have that

λn(µ̂)− λn(µ̄) = OP (a
1−α/2
n c1/2n ) +Op(bn),

as claimed.

A.2. Proof of Corollary 1. The first statement follows from the Central Limit Theorem,
since OP (a

1−α/2
n c

1/2
n ) + Op(bn) = oP (1) under our assumptions. The second statement is

obvious.

A.3. Proof of Corollary 2. This result follows from standard arguments.

A.4. Proof of Corollary 3. This result follows since µ̂ as defined in the Corollary satisfies
the assumptions made for Theorem 1.
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A.5. Proof of Corollary 4. It follows from van der Vaart (1998, Example 19.7) that
N2(ϵ,Mn) . ϵ− dim(Θ) . exp(ϵ−a) for all a > 0, which implies that Assumption 2 is satisfied
under the conditions of the Corollary. From the Glivenko-Cantelli Theorem, it also follows
that Assumption 1 is satisfied. However, it also follows from a slight modification of the
proof of Theorem 1 that λn(mθ̂)−λn(mθ∗) = OP (∥θ̂− θ∗∥), as claimed in the comment after
the Corollary. Specifically, since N2(ϵ,Mn) is actually of “smaller-than-exponential” order
here, it follows that

P (|λn(m∗)| > ϵ) . 1

ϵ

∫ an

0

√
log(N2(s,M∗

n))ds =
an − an log(an)

ϵ
,

for any fixed m∗ ∈ M∗
n and any ϵ > 0.

A.6. Proof of Corollary 5. For this proof, we use the notation that for s = (s1, . . . , sd) a
vector of non-negative integers let ∂sxm(t, x) = ∂s1x1

. . . ∂sdxd
m(t, x) denotes the partial deriva-

tives with respect to x of a generic function m. It then follows from Masry (1996) that we
can choose a sequence of functions µn, equal to the sum of µ and an asymptotic bias term,
such that

∥µ̂− µn∥∞ = OP

((
log(n)

nhd

)1/2
)

and ∥µn − µ∥∞ = O(h2).

Hence Assumption 1 is satisfied. Moreover, van der Vaart (1998, Example 19.9) shows that
N2(ϵ,Mn) . exp(ϵ−d/lcn). Differentiability of the kernel function then implies that µ̂ is
continuously differentiable up to order l; and by arguing as in Masry (1996) and Portier and
Segers (2018) one can also show that for all s with |s| ≡

∑d
j=1 sd ≤ l we have

∥∂sxµ̂− ∂sxµn∥∞ = OP

((
log(n)

nhd+2|s|

)1/2
)
.

It then follows from simple algebra that Assumption 2 is satisfied given the restrictions on
the bandwidth.

A.7. Proof of Corollary 6. This result follows from exactly the same arguments as those
used in the proof of Lemma 3 in Rothe and Firpo (2019).
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