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1. INTRODUCTION

An estimator of a finite-dimensional parameter in a semiparametric model is said to be doubly

robust (DR) if it imposes parametric specifications on two unknown nuisance functions,

and is consistent if at most one of these two specifications is incorrect (e.g. Scharfstein,

Rotnitzky, and Robins, 1999; Robins and Rotnitzky, 2001). Such estimators, which feature

prominently in the literature on missing data and causal inference models, achieve their

eponymous property by combining estimates of the two unknown nuisance functions in a

particular way. To illustrate that property, consider a simple missing data model where X is

a vector of covariates that is always observed, and Y ∗ is a scalar outcome variable that is

observed if D = 1, and unobserved if D = 0. The data consist of a random sample of size

n from the distribution of Z = (Y,X,D), where Y = DY ∗, and the parameter of interest

is θo = E(Y ∗). Assume that the data are missing at random, so E(D|Y ∗, X) = E(D|X),

and define the regression function ξo1(x) = E(Y |D = 1, X = x) and the propensity score

ξo2(x) = E(D|X = x). Then one well-known class of DR estimators of θo is of the form

θ̂DR = 1
n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)

)
, (1.1)

where ξ̂1 and ξ̂2 are estimates of ξo1 and ξo2, respectively, based on “working” parametric

models for these two functions.1 Alternative estimators of θo, which only require an estimate

of one of the two nuisance functions, include the regression-adjustment (REG) or the Inverse

Probability Weighting (IPW) estimator, defined as

θ̂REG = 1
n

n∑
i=1

ξ̂1(Xi) and θ̂IPW = 1
n

n∑
i=1

DiYi

ξ̂2(Xi)
, (1.2)

1The construction (1.1) is generally referred to as an Augmented Inverse Probability Weighting (AIPW)
estimator in the DR literature (Robins, Rotnitzky, and Zhao, 1994). There are other ways to construct
estimators with a DR property in such setups (e.g. Wooldridge, 2007; Graham, Pinto, and Egel, 2012;
Vermeulen and Vansteelandt, 2015). We focus on “AIPW-type” estimators in the following.
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respectively. In general, the latter estimators are only consistent if the “working” parametric

model for the respective nuisance function is correctly specified, whereas for θ̂DR to be

consistent it suffices that either of the two specifications is correct.

This paper considers the properties of estimators following a construction like (1.1) when

the nuisance functions are estimated nonparametrically via local polynomial smoothing. Such

estimators fall within the class of semiparametric two-stage (STS) estimators (e.g. Newey,

1994; Ai and Chen, 2003), and standard calculations show that under appropriate regularity

conditions the influence function of such a STS-DR estimator is identical to that of STS

versions of either θ̂REG or θ̂IPW . In particular, all three estimators are asymptotically efficient.

This raises the question whether one should at all consider a “DR approach” to building

an STS estimator in the above missing data example – or any other model in which DR

estimators exist – given that it involves additional computational costs, requires a second

smoothing parameter, and leads to a procedure that may not dominate existing ones in

terms of first-order asymptotic variance. Put differently: is the robustness against parametric

misspecification that constructions like (1.1) enjoy of any use in a nonparametric setting

where nuisance functions are always consistently estimated?

In this paper, we show that there are indeed strong reasons to prefer an STS version of

θ̂DR over estimators like θ̂REG or θ̂IPW . We first study a general missing data model, which

covers the example from above as a special case. Using local polynomial regression to estimate

the nuisance functions, a standard linear expansion of STS versions of θ̂DR, θ̂REG and θ̂IPW

produces the same first-order terms, but the corresponding remainder is substantially smaller

for θ̂DR than it is for the competing procedures. As a consequence, the otherwise commonly

required restriction that the estimation error of the nonparametric component is of the order

oP (n−1/4) is not necessary. STS-DR estimators can also have smaller first-order bias and

second-order variance than other first-order equivalent STS estimators, and their stochastic

behavior is more accurately described by the usual Gaussian approximation based on first-
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order asymptotics. The latter feature implies for example that the coverage probability of

the usual 95% confidence intervals of the form “point estimate±1.96×standard error” should

be closer to its nominal value in finite samples when it is based on the STS version of θ̂DR

instead of one of the other estimators. Through simulations, we show that these theoretical

predictions translate well into actual finite sample gains of practically relevant magnitude.2

We also argue that having to choose a second smoothing parameter is not a substantial

practical downside of the STS-DR estimator. This is an important concern because many

STS estimators, including STS versions of θ̂REG and θ̂IPW in models like the one described

above, can be highly sensitive with respect to the implementation details of the nonparametric

stage in finite samples (e.g. Robins and Ritov, 1997). This sensitivity arises because the

value of the smoothing parameters affects the magnitude of the remainder terms in a linear

expansion of these estimators; and while these terms are of “second order” in an asymptotic

sense, they can often be quite large for samples of the size typically encountered in empirical

practice. Since the construction (1.1) automatically removes the largest of these second order

terms, however, STS-DR estimators should be rather insensitive to variation in smoothing

parameters, which is confirmed by our simulations. We also show that in many cases the

bandwidth can be selected via cross-validation.

As a second contribution, we analyze which particular features of the semiparametric

missing data model are responsible for the gain in performance of the STS-DR estimator

relative to its competitors in order to clarify under which conditions we would expect to be

able to construct estimators with analogous properties in other semiparametric models in

which doubly robust procedures are known to exist. To answer this question, we study a

simple class of STS estimators in a general model about which we essentially only assume that
2While our theoretical results only cover kernel-based estimators for the nuisance functions, in our

simulations we also consider other nonparametric estimation procedures, such as orthogonal series regression
and smoothing splines. Our simulation results confirm that STS versions of the DR estimator have favorable
finite sample properties relative to many other STS estimation approaches, irrespective of the type of
nonparametric estimation procedure being used.
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it gives rise to a doubly robust moment condition.3 Our main, somewhat surprising finding is

that the DR property alone is actually not able to generate STS estimators with the same

desirable properties that we obtained under the missing data model. Achieving analogous

results requires some additional structure which, roughly speaking, ensures that the residuals

from estimating the two nuisance functions are asymptotically uncorrelated. In the case of

the missing data model, for example, this property follows from the assumption that the data

are missing at random; and it follows through analogous arguments for a wide range of causal

inference models that are similar in structure. We also show that this property is satisfied in

three other semiparametric models in which DR estimators are known to exist: the partially

linear regression model, a model for nonparametric policy analysis, and weighted average

derivatives.

1.1. Related Literature. Two-step estimators that depend on nonparametrically estimated

functions, such as densities or conditional expectations, feature prominently in a wide range of

applications. General results for such estimators have been obtained for example by Goldstein

and Messer (1992), Newey (1994), Newey and McFadden (1994), Andrews (1994), Chen,

Linton, and Van Keilegom (2003), Chen and Shen (1998), Ai and Chen (2003), Ichimura and

Lee (2010), Escanciano, Jacho-Chávez, and Lewbel (2014, 2016), and Mammen, Rothe, and

Schienle (2016), among many others. Often these estimators are first-order asymptotically

equivalent to a sample average. In particular, an STS estimator θ̂ of some parameter θo

based on an i.i.d. sample {Zi}ni=1 from the distribution of some random vector Z is said to

be asymptotically linear with influence function φ(·) if

Rn(θ̂) ≡ θ̂ − θo − 1
n

n∑
i=1

φ(Zi) = oP (n−1/2), E(φ(Zi)) = 0, E(φ(Zi)φ(Zi)>) <∞.

3Here a moment condition is said to be doubly robust if it depends on two unknown nuisance functions,
but still identifies the parameter of interest if either one of these functions is replaced by some arbitrary value.
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Our focus in this paper is not on the form of φ(·), but on the accuracy of the first-order approx-

imation that Rn(θ̂) ≈ 0, which together with an application of the CLT to (1/
√
n)∑n

i=1 φ(Zi)

justifies the Gaussian approximation that θ̂ a∼ N(θo,E(φ(Zi)φ(Zi)>)/n).

Several papers have obtained results about the magnitude of Rn(θ̂) for various estimators

under various conditions. In order to have a point of reference for the findings presented in

this paper it is useful to review some of them.4 One class of results applies to settings where

θ̂ depends on an (l + 1)-times differentiable regression or density function with d-dimensional

argument that is estimated by kernel-type methods using a bandwidth h.5 It is well-known

that under standard regularity conditions the nonparametric first-stage estimator has bias

of order hl+1 and (pointwise) variance of order n−1h−d in this case. Newey and McFadden

(1994) show that an STS estimator θ̂ in this class generally satisfies

Rn(θ̂) = OP (hl+1) +OP (n−1h−d).

Asymptotic linearity of θ̂ thus requires a “small bias” and a “small variance” condition on the

first step nonparametric estimator. Hall and Marron (1987), Powell, Stock, and Stoker (1989)

and Powell and Stoker (1996) show that if θ̂ is a linear transformation of a “leave-one-out”

kernel weighted average6 the “small variance” condition can be relaxed because

Rn(θ̂) = OP (hl+1) +OP (n−1h−d/2)
4Note that if Rn(θ̂) vanishes faster for one estimator relative to another as the sample size increases, this

does not necessarily imply that the asymptotic linear approximation is more accurate for a particular finite
sample size for the one estimator relative to the other, as the constants associated with the rates are generally
different for different estimators.

5By kernel-type methods, we mean methods like the Rosenblatt-Parzen kernel density estimator, the
Nadaraya-Watson estimator, local linear or local polynomial regression, and local parametric models. Moreover,
we note that d refers to the number of continuously distributed covariates. Discrete covariates can be
accommodated via the usual frequency method without affecting the following results, or as in Racine and Li
(2004).

6Functions that can be estimated by kernel-weighted averages are those of the form ξ(a) = f(a)E(B|A = a),
where A,B are generic random variables and f is the density of of A. This class does thus not contain
conditional expectation functions, for example.
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in this case. Techniques for explicitly removing the term of order OP (n−1h−d) for estimators

that are nonlinear transformations of a nonparametrically estimated function are discussed in

the context of specific applications by Ichimura and Linton (2005) or Cattaneo, Crump, and

Jansson (2013). Newey, Hsieh, and Robins (2004) show that if a twicing kernel is used instead

of a regular one, or if θ̂ is based on an influence function in the corresponding semiparametric

model, then one can weaken the “small bias” condition for asymptotic linearity since

Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d)

in this case. Bickel and Ritov (2003) show that the same degree of accuracy can be achieved

with a generic higher-order kernel if φ(·) is sufficiently smooth and the nonparametrically

estimated function is a density; see also Ichimura and Newey (2015).7 Newey (1994) shows

that when using an orthogonal series estimator in the first stage, an analogous less stringent

“small bias” condition suffices for asymptotic linearity of a general class of STS estimators; a

result that is extended by Shen (1997), Chen and Shen (1998) and Ai and Chen (2003) to

more general classes of sieve estimators. In contrast, our findings imply that the magnitude

of both second order terms is reduced for kernel-based STS versions of DR estimators relative

to the baseline result of Newey and McFadden (1994). Specifically, we show that

Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d/2) +OP (log(n)3/2n−3/2h−3d/2),

where the last term results from a crude bound on a cubic remainder term that could possibly

be improved at the cost of highly tedious calculations. We also show this improvement does
7This result can to some extent be combined with the ones mentioned above. For example, if θ̂ is a

linear transformation of a “leave-one-out” kernel weighted average and a twicing kernel is being used, then
Rn(θ̂) = OP (h2(l+1)) +OP (n−1h−d/2); see Newey et al. (2004). Note that estimators based on higher-order
kernels are often reported to have poor finite sample properties not reflected by second-order asymptotic
expansions, and are therefore rarely used in practice. A twicing kernel is a particular type of higher-order
kernel. Newey et al. (2004) report good finite sample properties of estimators of weighted average derivatives
based on such kernels, but in our own simulations of a missing data setup the performance of estimators
based on twicing kernels is much less satisfactory.
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not follow from the DR property alone.

STS versions of DR estimators have been used before in some papers. One example is

Robinson’s (1988) estimator of the parametric component of a partially linear model. In

a causal inference context, Cattaneo (2010) proposes an STS-DR estimator, but does not

prove that this approach has any formal advantages. The construction that leads to the DR

property is explicitly exploited in Belloni, Chernozhukov, and Hansen (2014), Farrell (2015)

and Belloni, Chernozhukov, Fernández-Val, and Hansen (2016) for causal inference in a very

high-dimensional setting, where a LASSO-type estimator is used in the first stage. Of course,

our article also builds on the extensive literature on doubly robust estimation. See Robins

et al. (1994), Scharfstein et al. (1999), Robins and Rotnitzky (1995), Robins and Rotnitzky

(2001), Bang and Robins (2005), Kang and Schafer (2007), Tan (2010) or Vermeulen and

Vansteelandt (2015), among many others.

1.2. Outline of the Paper. The remainder of the paper is structured as follows. In the

next section, we study an STS analogue of a DR estimator in a missing data model, and

show that it has favorable theoretical and practical properties relative to other commonly

used STS estimators. In Section 3, we study estimation in a general class of models which

gives rise to a DR moment condition. We show that the DR property alone is not enough

to generate the type of results we obtained for the missing data model, and clarify which

additional structure is needed. We then argue that this structure is also present in three

other models in which DR estimators are known to exist: the partially linear model, a model

for policy analysis, and weighted average derivatives. Finally, Section 4 concludes. Regularity

conditions and proofs are collected in the Appendix.

2. ESTIMATION IN A MISSING DATA MODEL

In this section, we study a general semiparametric missing data model that contains the

simple example outlined in the introduction as a special case, but also covers for example
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regression models with missing covariates and/or outcome variables (e.g. Scharfstein et al.,

1999; Chen, Hong, and Tarozzi, 2008), and causal inference models (e.g. Hahn, 1998; Hirano,

Imbens, and Ridder, 2003). We consider this setting because it is the one in which double

robust estimation features most prominently in the literature.

2.1. Model. Suppose that the underlying full data are a sample from the distribution of

(Y ∗, X) ∈ R × Rd, and let D be an indicator variable with D = 1 if Y ∗ is observed and

D = 0 otherwise. The observed data thus consist of a sample {Zi}ni=1 = {(Yi, Xi, Di)}ni=1

from the distribution of Z = (Y,X,D), where Y = DY ∗. The parameter θo is the unique

solution of the nonlinear moment condition E(m(Y ∗, X, θ)) = 0, where m(·, θ) is a known

function taking values in Rdθ . Identification is achieved by assuming that Y ∗ is missing at

random, that is E(D|Y ∗, X) = E(D|X) with probability 1. Now define the regression function

ξo1(x, θ) = E(m(Y,X, θ)|D = 1, X = x) and the propensity score ξo2(x) = E(D|X = x), and

note that the propensity score is assumed to be bounded away from zero over the support of

X. Next, define

φMD(Z) = E(∇θm(Y ∗, X, θo))−1
(
D(m(Y,X, θo)− ξo1(X, θo))

ξo2(X) + ξo1(X, θo)
)
,

ΣMD = E(φMD(Z)φMD(Z)>),

which are, respectively, the efficient influence function and the asymptotic variance bound for

estimating θo in this model (cf. Robins et al., 1994; Hahn, 1998).

2.2. Estimator and Main Result. We consider estimating the parameter θo based on the

moment condition that the efficient influence function’s expectation is equal to zero. Since

the matrix E(∇θm(Y ∗, X, θo)) is assumed to be of full rank, this is equivalent to considering

the moment condition

E(ψMD(Z, θ, ξo)) = 0 if and only if θ = θo,
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where Z = (Y,X ′)′, ξo = (ξo1, ξo2), and ψMD(Z, θ, ξ) = (D(m(Y,X, θ) − ξo1(X, θo)))/ξ2(X) +

ξo1(X, θ). Given an estimate ξ̂ of ξo, our estimator θ̂DR of θo is then given by the value of θ

that solves the equation

1
n

n∑
i=1

ψMD(Zi, θ, ξ̂) ≡
1
n

n∑
i=1

(
Di(m(Yi, Xi, θ)− ξ̂1(Xi, θ))

ξ̂2(Xi)
+ ξ̂1(Xi, θ)

)
= 0.

We refer to ψMD as a DR moment function, and to θ̂DR as an STS-DR estimator in the

following, as analogous estimators of θo based on parametric specifications for the two nuisance

functions are known to be doubly robust.

However, we deviate from the usual DR literature since we obtain our estimates ξ̂1 and ξ̂2

of ξo1 and ξo2 by “leave-one-out” local polynomial regression (Fan, 1993; Ruppert and Wand,

1994).8 This class of kernel-based smoothers is well-known to have attractive bias properties

relative to other kernel-based methods, such as the Nadaraya-Watson estimator. For generic

vectors b = (b1, . . . , bd) and α = (α(0,...,0), α(1,0,...,0), . . . , α(0,...,0,l)), let Pl,α(b) = ∑
0≤|s|≤l αsb

s

be a polynomial of order l. Here we use the notation that |a| = ∑d
i=1 ai and ab = ∏d

i=1 a
bi
i for

generic d-dimensional vectors a, b, and that ∑0≤|s|≤l denotes the summation over all d-vectors

s of positive integers with 0 ≤ |s| ≤ l. Also let K be a univariate density function, put

Kh(b) = ∏d
j=1K(bj/h)/h for any bandwidth h ∈ R+, and define

ξ̂1(Xi, θ) = e>1 argmin
α

∑
j 6=i

(m(Yj, Xj, θ)− Pl1,α(Xj −Xi))2Kh1(Xj −Xi)I{Dj = 1},

ξ̂2(Xi) = e>1 argmin
β

∑
j 6=i

(Dj − Pl2,β(Xj −Xi))2Kh2(Xj −Xi),

with e1 the first unit vector (of appropriate dimension). Note that we are allowing for different

orders of the local polynomial and different bandwidths when estimating ξo1 and ξo2, but in

practice they might well be the same. For g = 1, 2, we also define the sequences bgn = hlg+1
g

and sgn = (log(n)/(nhdg))1/2, which under the conditions that we impose below correspond to
8We assume for simplicity that all d components of X are continuously distributed. Discrete covariates

can be accommodated via the usual frequency method, or as in Racine and Li (2004).
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the uniform rate of convergence of the bias and the stochastic part, respectively, of our two

nonparametric estimators (cf. Masry, 1996). We then obtain the following result about the

asymptotic linearity of θ̂DR.

Theorem 1. Under suitable regularity conditions (see Appendix A.1),
√
n(θ̂DR − θo) =

n−1/2∑n
i=1 φMD(Zi) + oP (1) d→ N(0,ΣMD) if h1, h2 are such that b1nb2n = o(n−1/2), bgn =

o(n−1/6) and sgn = o(n−1/6) for g = 1, 2.

2.3. Discussion. Theorem 1 differs from other asymptotic linearity results for STS estimators

in that it only imposes relatively weak conditions on the accuracy of the nonparametric

first stage estimates. The bandwidth restrictions allow each of the smoothing biases from

estimating ξo1 and ξo2 to be of the order o(n−1/6) as long as their product is of the order o(n−1/2),

and only require the respective stochastic parts to be of the order oP (n−1/6). Asymptotic

linearity of a STS estimator otherwise typically requires an oP (n−1/4) rate of convergence for

the nonparametric component (e.g. Newey, 1994).

Weaker conditions are possible here because the difference between θ̂DR and its asymptoti-

cally linear representation is particularly small. To see this, consider the case that h1 = h2 ≡ h

and l1 = l2 ≡ l to simplify the exposition. By following the proof of Theorem 1 we find that

θ̂DR − θo −
1
n

n∑
i=1

φMD(Zi) = OP (h2(l+1)) +OP (n−1h−d/2) +OP (log(n)3/2n−3/2h−3d/2).

The right-hand side of this equation is minimized if h is chosen such from the permissible

range of bandwidths that n1/2dh→∞, in which case

θ̂DR − θo −
1
n

n∑
i=1

φMD(Zi) = OP (h2(l+1)) +OP (n−1h−d/2). (2.1)

The magnitudes of the two terms on the right-hand side of the previous equation correspond to

those of the squared bias and hd/2 times the (pointwise) variance of the ξ̂g, respectively. Their

sum can be as small as OP (n−4(l+1)/(4(l+1)+d)). If l = d = 1, for example, the right-hand-side

of (2.1) is minimized by choosing h ∝ n−2/9, and is of the order OP (n−8/9) in this case. If
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d ≤ 3, the range of bandwidths that satisfy the conditions of Theorem 1 includes those of

the form hg ∝ n−1/(2(l+1)+d), which minimize the Integrated Mean Squared Error (IMSE)

for estimating ξo1 and ξo2, respectively. This is convenient, as there are well-known methods

such as cross-validation to construct such bandwidths. However, such bandwidths do not

necessarily have any optimality properties for estimating θo.

It is interesting to compare these properties to that of the popular Inverse Probability

Weighting (IPW) estimator θ̂IPW (e.g. Hirano et al., 2003; Firpo, 2007), which is defined as

the value of θ that solves the equation

1
n

n∑
i=1

Dim(Yi, Xi, θ)
ξ̂2(Xi)

= 0.

Following Ichimura and Linton (2005) and Bravo and Jacho-Chávez (2010), who study a

slightly simpler version of this estimator, we would need h2 to be such that b2n = o(n−1/2)

and s2n = o(n−1/4) to ensure that
√
n(θ̂IPW − θo) = n−1/2∑n

i=1 φMD(Zi) + oP (1). These

conditions are called for because

θ̂IPW − θo −
1
n

n∑
i=1

φMD(Zi) = OP (hl+1) +OP (n−1h−d). (2.2)

The difference between θ̂IPW and its asymptotically linear representation is thus at best

of the order OP (n−(l+1)/(l+1+d)). For example, if l = d = 1 the difference is at least of

the order OP (n−2/3), which is bigger than what we obtained for the STS-DR estimator.

As a consequence, we can expect standard Gaussian approximations based on first-order

asymptotic theory to be more accurate in finite samples for θ̂DR than for θ̂IPW .

Remark 1. In nonparametric regression problems with a binary dependent variable, one

can use local Probit or Logit models, as in Fan, Heckman, and Wand (1995), instead of

standard local polynomial regression in order to ensure that the final estimator is constrained

to take values in the unit interval. We conjecture that the use of such alternative estimation

techniques for the propensity score (or the regression function, in case of a binary outcome)
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would not change the substantive conclusions of Theorem 1; subject of course to a suitable

adaptation of regularity conditions. This conjecture is based on results by Kong, Linton,

and Xia (2010), which show that a large class of local M-estimators possesses a stochastic

expansion that is analogous in structure to the one of the local polynomial regression estimator

we use in our proofs.

Remark 2. If one were to use a “leave-in” version of the local polynomial regression estimator

to construct θ̂DR, this would give rise to an additional bias term of order O(n−1h−d) in the

right-hand-side of expansion (2.1). This bias would not vanish faster than n−1/2 under the

conditions of Theorem 1. Using “leave-one-out” estimators to avoid this type of bias is a

standard technique in the literature on STS estimation; see for example Hall and Marron

(1987), Powell et al. (1989) or Powell and Stoker (1996).

2.4. Simulation Evidence. In this subsection, we study the finite sample properties of the

STS-DR estimator through a Monte Carlo experiment, and compare them to those of other

STS estimators of the same parameter. Our aim is to illustrate that the theoretical results

obtained above provide a realistic picture of the behavior of the estimator in practice. The

data generating process in our simulations is the special case of our general missing data

model described in the introduction. The covariate X is scalar and uniformly distributed

on the interval [0, 1].9 The outcome variable Y ∗ is normally distributed given X with mean

ξo1(X) = 1/(1 + 16 · X2) and variance .5. The indicator D for a complete observation

is a Bernoulli random variable with mean ξo2(X) = 1 − .8 · ξo1(X). With these choices
9While real empirical applications typically involve several covariates, we confine ourselves to the case of

single covariate for our simulations. This is because the finite-sample performance of the estimators that we
consider does not so much depend on the number of covariates, but on the overall complexity of the functions
that are being estimated. We refer to Frölich, Huber, and Wiesenfarth (2015) and Naimi and Kennedy (2017)
for extensive simulation studies of STS-DR estimators in program evaluation settings with multiple covariates.
These studies find properties of STS-DR estimators that are qualitatively very similar to the simulation
results in this paper. In Appendix C, we also report simulation results for several modified versions of our
DGP in which the density of the covariate is not bounded away from zero. Again, the results are qualitatively
very similar to the ones reported here.
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θo = E(Y ∗) ≈ .331 and ΣMD ≈ .188. We consider the sample size n = 500, and set the

number of replications to 5,000.

While our theoretical results above only cover kernel-based estimation of nuisance functions,

for our simulations we also consider other types of nonparametric first stage estimators. We

also use a variety of different smoothing parameters. Specifically, we consider estimators of

the form

θ̂DR−s = 1
n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)

)

with s ∈ {K,OS, SP}. Here θ̂DR−K is the kernel based estimator described above, which

uses a “leave-one-out” local linear estimator with bandwidth h1 ∈ {.05, .08, . . . , .5} for the

regression function ξo1; and a “leave-one-out” local linear Logit estimator with bandwidth

h2 ∈ {.05, .08, . . . , .5} for the propensity score ξo2. In both instances a Gaussian kernel is

used. By θ̂DR−OS we denote an orthogonal series based STS-DR estimator, which uses a

linear series regression with a standard polynomial basis and h1 ∈ {1, 2, . . . , 11} terms to

estimate the regression function; and a series Logit estimator using the same set of basis

functions and h2 ∈ {1, 2, . . . , 11} terms to estimate the propensity score. Finally, we consider

a spline based STS-DR estimator θ̂DR−SP , which uses cubic smoothing splines with smoothing

parameters h1, h2 ∈ {.5, .55, . . . , 1.25} for the regression function and the propensity score,

respectively.10 For all combinations of nonparametric estimators and smoothing parameters,

we also compute nominal (1− α) confidence intervals of the usual form

CI1−α
DR−s =

[
θ̂DR−s ± zα ·

(
Σ̂s/n

)1/2
]
,

10To give a point of reference, note that the smoothing parameters for estimating the regression function
and the propensity score, respectively, that would be obtained by minimizing a least-squares cross-validation
criterion are roughly equal for these two functions, and take a numerical value of about .1 for kernel estimation,
3 for series estimation, and 1 for splines.
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where zα is the 1− α/2 quantile of the standard normal distribution and

Σ̂s = 1
n

n∑
i=1

(
Di(Yi − ξ̂1(Xi))

ξ̂2(Xi)
+ ξ̂1(Xi)− θ̂DR−s

)2

is an estimate of the asymptotic variance ΣMD, for s ∈ {K,OS, SP}. We consider the usual

confidence level 1− α = .95 for our simulations.

[TABLE 1 ABOUT HERE]

In Table 1 we report the Mean Squared Error (MSE), absolute bias (BIAS) and variance

(VAR) for the various implementations of the STS-DR estimator for a subset of smoothing

parameters that we considered. We scale these quantities by appropriate transformations

of the sample size to make them more easily comparable to the predictions from first-order

asymptotic theory. Our results show that uniformly over all implementations the STS-DR

estimators are essentially unbiased, and their variance is very close to the efficiency bound

ΣMD ≈ .188. Correspondingly, the MSEs are also very similar to their theoretically predicted

value ΣMD. We also report the empirical coverage probability of the corresponding confidence

intervals, which are all very close to the nominal level 95%. We interpret these results as

evidence that first order asymptotic theory provides a reliable approximation to the finite

sample distribution of the STS-DR estimators, and that this approximation is robust with

respect to the construction of the nonparametric first stage (both the type of estimator and

the choice of smoothing parameters).

To put these results into perspective, we also study the performance of a number of

alternative estimators that are not STS analogues of a DR procedure. To begin by considering

inverse probability weighting (IPW) and regression (REG) type estimators using the same

range of nonparametric first step procedures and smoothing parameters as for STS-DR
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estimators above. That is, we consider the estimators

θ̂IPW−s = 1
n

n∑
i=1

DiYi

ξ̂2(Xi)
and θ̂REG−s = 1

n

n∑
i=1

ξ̂1(Xi),

with s ∈ {K,OS, SP}, and the corresponding nominal (1− α) confidence intervals CI1−α
IPW−s

and CI1−α
REG−s. Note that these two confidence intervals by construction have the same length

as CI1−α
DR−s for each s and every value of the smoothing parameters, and only differ in the

point at which they are centered.11

In addition to these estimators, we also consider two modifications of the kernel-based

procedures. First, we consider estimators θ̂IPW−TK and θ̂REG−TK that are obtained in the

same way as the ordinary kernel-based IPW and REG estimator, respectively, except for

using a Gaussian twicing kernel instead of a regular one (Newey et al., 2004). Second, we

consider bootstrap bias corrected versions θ̂IPW−BS and θ̂REG−BS of the two kernel-based

estimators, following recommendations in Cattaneo and Jansson (2014).12 We also consider

bootstrap-based confidence intervals for θo calculated using the usual percentile method. Note

that the calculation of these confidence intervals does not involve estimating the asymptotic

variance, and thus does not depend on a second smoothing parameter.

[TABLES 2 AND 3 ABOUT HERE]

Our simulation results are given in Table 2 for IPW estimators, and Table 3 for REG

estimators. They show that the properties of these estimators can differ substantially from

the predictions of first-order asymptotic theory. In particular, their finite-sample distribution
11From the practitioner’s perspective, using STS-DR is not more costly computationally than, say, using

the STS-REG or STS-IPW estimator since conducting inference based on an estimate of the asymptotic
variance requires estimates of the regression function and the propensity score for all three procedures.

12Specifically, the estimators θ̂IPW−BS and θ̂REG−BS are obtained in three steps. First one computes
an ordinary kernel-based IPW or REG estimator, but without using a “leave-one-out” procedure in the
nonparametric stage. Second, a bootstrap distribution is created by re-computing the estimator on i.i.d.
draws of size n from the empirical distribution function of the data, and centering at the original estimate.
Third, the mean of the bootstrap distribution is taken as an estimate of the bias, and subtracted from the
original estimator.
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varies a lot over the various nonparametric first stage procedures we consider, and thus

inference is generally less robust relative to the STS-DR estimators. For example, the kernel-

based IPW estimator θ̂IPW−K is strongly biased for most values of the bandwidth. Its finite

sample variance is well above the theoretical asymptotic variance for all bandwidth values,

exceeding it by almost 70% for h2 = .05. In consequence, the coverage properties of the

corresponding confidence intervals tend to be poor. We also illustrate this point in Figure 5

by plotting the MSE, bias and variance of θ̂IPW−K against the results for the kernel-based

DR estimator θ̂DR−K . One can see, for example, that the finite-sample MSE of θ̂DR−K viewed

as a function of the bandwidths is close to flat and near the theoretically predicted value of

.188. On the other hand, the MSE of θ̂IPW−K viewed as a function of the bandwidth has a

pronounced “U-shape” and is always well above the theoretically predicted value.

Turning to the remaining estimators, we find that using a twicing kernel does not lead

to a substantial improvement. Our results show some minor bias reduction but also a large

increase in variance relative to the kernel-based IPW.13 Bootstrap bias correction is effective

at reducing the bias for small values of the smoothing parameter, but tends to increase

it for larger bandwidth values. It also tends to increase the finite sample variance of the

estimator, but bootstrap-based confidence intervals have good coverage properties for small

and moderate values of the smoothing parameter. The orthogonal series estimator does very

well in our study in terms of bias, which is small except for the implementation using a

single series term. Still, its variance exceeds the predicted one by roughly 20%. Finally, the

spline based estimator’s bias also depends heavily on the smoothing parameter, whereas its

variance properties are similar to those of the series-based one. Table 3 shows that REG-type

estimators generally perform somewhat better than IPW estimators in this setting. Variances
13The the REG and IPW estimators based on twicing kernels also produce a number of substantial outliers,

which we removed for the calculations of our summary statistics. Specifically, we discarded all realizations
which differed from the median over all simulations runs by more than four times the interquartile range (we
proceeded like this with all estimators to keep the results comparable).
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Figure 1: Simulation results: MSE, absolute bias and variance of θ̂IPW−K for various values of h2
(bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal to .05 (short-dashed line),
.08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed dotted line), and .5
(thin solid line).

are relatively close to the efficiency bound over all nonparametric first stage procedures that

we consider. Still, the bias of the kernel, twicing kernel, and bootstrap-corrected kernel

estimators all vary strongly with the smoothing parameter.

3. ESTIMATION IN A GENERAL SEMIPARAMETRIC MODEL

The results derived in the previous section prompt the question whether they are specific to

the model that we considered there, or whether we should generally expect STS versions of

DR estimators to have analogous favorable properties. To answer this question, we study a

general class of STS-DR estimators that are constructed as solutions to a sample analogue
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of a DR moment condition; a concept that we formally define below. This setup covers the

model from the previous section, but also several others; see Section 3.4 below. We show

that this construction alone is not enough to obtain an asymptotic linearity result like the

one in the previous section, but that instead some additional structure is needed. However,

we argue that this additional structure is present in many models in which DR estimators

are known to exist.

3.1. Setup. Consider the problem of estimating a parameter θo, contained in the interior of

some compact parameter space Θ ⊂ Rdθ , using an i.i.d. sample {Zi}ni=1 from the distribution

of some random vector Z ∈ Rdz . We suppose that one way (of potentially many different

ones) to characterize θo is through a moment condition containing an infinite dimensional

nuisance parameter. That is, we assume that the model which determines the distribution

of Z is such that there exists a known function ψ that takes values in Rdθ and satisfies the

following relationship:

Ψ(θ, ξo) ≡ E(ψ(Z, θ, ξo)) = 0 if and only if θ = θo. (3.1)

Here ξo is an unknown (but identified) nuisance function that could in principle also depend

on θ. The functional Ψ is also assumed to be doubly robust for estimating θo, in the sense

that ξo can be partitioned as ξo = (ξo1, ξo2) ∈ Ξ1 × Ξ2 such that

Ψ(θ, ξo1, ξ2) = 0 and Ψ(θ, ξ1, ξ
o
2) = 0 if and only if θ = θo (3.2)

for all functions ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2. The function ψ is called a doubly robust moment

function in this case. We do not consider the issue of whether such a function exists in any

given semiparametric model.14

14See Robins and Rotnitzky (2001) for some results in this regard. One of their results is that if a DR
moment function exists, it has to be an element of the space of influence functions of the corresponding
semiparametric model. Since every influence function for estimating a dθ-dimensional parameter takes values
in Rdθ by construction, we can focus on settings where ψ takes values in Rdθ without loss of generality.
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To simplify the exposition, we focus on two special cases; one where both ξo1 and ξo2

are conditional expectations, and one where ξo1 is the density function of a continuously

distributed random vector and ξo2 is a conditional expectation:

Case 1: ξog(xg) = E(Yg|Xg = xg) for g ∈ {1, 2};

Case 2: ξo1(x1) = ∂x1P (X1 ≤ x1) and ξo2(x2) = E(Y2|Xg = x2).

Here Yg ∈ R, Xg ∈ Rdg and (Y1, Y2, X1, X2) is a random subvector of Z that might have

duplicate elements. We also assume for simplicity that ξo does not depend on θ, and that the

moment function is such that ψ(Z, θ, ξ1, ξ2) depends on ξg through ξg(Ug) only, where Ug is a

subvector of Z. With U denoting the union of distinct elements of U1 and U2, we write ξ(U) =

(ξ1(U1), ξ2(U2)) and, with some abuse of notation, ψ(Z, θ, ξ1, ξ2) = ψ(Z, θ, ξ1(U1), ξ2(U2)) and

Ψ(θ, ξ1, ξ2) = E(ψ(Z, θ, ξ1(U1), ξ2(U2))).

3.2. Estimator and Main Result. Our interest is in the properties of STS estimators based

on a sample analogue of a DR moment condition, which we refer to as STS-DR estimators.

Such an estimator θ̂DR of θo can be constructed as the value of θ which solves the equation

Ψn(θ, ξ̂) ≡ 1
n

n∑
i=1

ψ(Zi, θ, ξ̂(Ui)) = 0, (3.3)

where ξ̂ = (ξ̂1, ξ̂2) is a suitable nonparametric estimate of ξo = (ξo1, ξo2). Under Case 1, we

estimate ξog by “leave-one-out” local polynomial regression of order lg using bandwidth hg,

for g = 1, 2. Using notation analogous to that introduced in Section 2.2, we put

ξ̂g(Ugi) = e>1 argmin
α

∑
j 6=i

(
Ygj − Plg ,α(Xgj − Ugi)

)2
Khg(Xgj − Ugi), g = 1, 2.

For Case 2, we use a standard “leave-one-out” kernel density estimator to estimate the

density ξo1, using a kernel function of order l1 + 1 for the purpose of bias control. That is,

with K∗ a symmetric function on R whose exact properties are stated in the Appendix, and
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K∗h(b) = ∏d
j=1K∗(bj/h)/h, we define

ξ̂1(U1i) = 1
n

∑
j 6=i

K∗h1(U1j −X1i).

Our estimate of ξo2 is the same as for Case 1. For g = 1, 2, we also define the sequences

bgn = hlg+1
g and sgn = (log(n)/(nhdg))1/2, which under the conditions that we impose below

correspond to the (uniform) order of the bias and the stochastic part, respectively, of our two

nonparametric estimators in both Case 1 and 2.

Due to the DR property of ψ we expect θ̂DR to be adaptive, in the sense that its own

influence function and asymptotic variance are identical to that of an infeasible estimator

which uses the true functions (ξo1, ξo2) instead of the corresponding nonparametric estimates.

That is, we expect the influence function and asymptotic variance of θ̂DR to be

φG(Z) = H−1ψ(Z, θo, ξo1, ξo2) and ΣG = E(φG(Z)φG(Z)>),

respectively, where H = E(∂θψ(Z, θo, ξo)). The following theorem gives conditions for the

asymptotic linearity of θ̂DR.

Theorem 2. Under suitable regularity conditions (see Appendix A.2),
√
n(θ̂DR − θo) =

n−1/2∑n
i=1 φG(Zi) + oP (1) d→ N(0,ΣG) if in addition either of the following conditions is

satisfied:

(a) h1, h2 are such that bgn = o(n−1/4) and sgn = o(n−1/4) for g = 1, 2.

(b) we are in Case 1, the distribution of Z is such that

E((Y1 − ξo1(X1)) · (Y2 − ξo2(X2))|X1, X2) = 0, (3.4)

and h1, h2 are such that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2.

(c) we are in Case 2, the distribution of Z is such that X1 = r(X2) for some fixed function r,

and h1, h2 are such that b1nb2n = o(n−1/2), bgn = o(n−1/6) and sgn = o(n−1/6) for g = 1, 2.
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3.3. Discussion. Theorem 2(a) is the main result of this section. It shows that simply being

based on a DR moment condition is not enough for an STS estimator to be asymptotically

linear under the same kind of weak restrictions that we imposed for the missing data model.

Consider the case that h1 = h2 ≡ h and l1 = l2 ≡ l to simplify the exposition. From the

proof of Theorem 2(a) we see that under its conditions we only get that

θ̂DR − θo −
1
n

n∑
i=1

φG(Zi) = OP (h2(l+1)) +OP (n−1h−d). (3.5)

Following Newey and McFadden (1994), we would expect such a result for any adaptive kernel-

based STS estimator. We remark that STS-DR still performs somewhat better than adaptive

STS estimators, but in a way that is not apparent from (3.5). To explain this, consider the

functionals ξ1 7→ Ψ(θo, ξ1, ξ
o
2) and ξ2 7→ Ψ(θo, ξo1, ξ2). If ψ was only an influence function

without the DR property, these functionals would each have zero first order derivatives. With

the DR property, these functionals are actually constant and equal to zero. An inspection of

the proof of Theorem 2 shows that this property removes some but not all terms of order

OP (n−1h−d) from an expansion of the estimator θ̂DR (relative to that of an STS estimator

based on a moment condition with two nuisance functions without the DR property).

So which features of a semiparametric model, in addition to the presence of a DR moment

condition, deliver properties of STS-DR estimators of the kind we found in Section 2?

This question in answered by Theorem 2(b)–(c). Under the conditions stated there, θ̂DR

has theoretical properties analogous to those established in Theorem 1. In particular, the

nonparametric component is not required to converge with a rate of oP (n−1/4), and

θ̂DR − θo −
1
n

n∑
i=1

φG(Zi) = OP (h2(l+1)) +OP (n−1h−d/2) +OP (log(n)3/2n−3/2h−3d/2). (3.6)

This improvement over part (a) comes from the fact that for an STS-DR estimator, roughly

speaking, the remaining term of order OP (n−1h−d) in equation (3.5) is driven by the asymp-

totic covariance between the residuals of ξ̂1 and ξ̂2. For our Case 1, the orthogonality
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condition (3.4) essentially ensures that ξ̂1 − ξo1 and ξ̂2 − ξo2 are asymptotically uncorrelated,

and the OP (n−1h−d) term drops out. For our Case 2, the estimation error ξ̂1− ξo1 is essentially

a weighted sum of functions of the X1i, whereas ξ̂2 − ξo2 is essentially a weighted sum of the

“true” residuals Y2i − ξo2(X2i). Since the latter are uncorrelated with any function of X2i, the

OP (n−1h−d) term vanishes.

While the conditions of Theorem 2(b)–(c) might at first seem obscure and rather restrictive,

they are indeed satisfied by a wide range of models. For the missing data model in Section

2, which falls under Case 1, the orthogonality property required by Theorem 2(b) follows

from the fact that the data are missing at random. Theorem 2(b) also covers various models

for causal inference that are similar in structure, in the sense that identification is achieved

through some particular conditional independence restriction. Our results thus extend, for

example, to the DR estimators of average treatment effects under unconfoundedness reviewed

in Bang and Robins (2005), but also to the DR estimators of local average treatment effects

using instrumental variables proposed by Tan (2006) and Ogburn, Rotnitzky, and Robins

(2015). Moreover, as pointed out in the following subsection, Theorem 2(b)–(c) also cover

the partially linear model, a policy effects model, and weighted average derivatives.

Remark 3. In a model with a DR moment condition for which the conditions of Theorem 2(b)–

(c) are not naturally satisfied, one can always construct a modified nonparametric first-stage

estimator such that ξ̂1 − ξo1 and ξ̂2 − ξo2 are asymptotically uncorrelated by splitting the data

into two parts at random, and then calculate ξ̂1 and ξ̂2 from different subsamples.

3.4. Application to Further Specific Models. We now briefly review three additional

specific examples that are widely used in applied work, and that are covered by the theory

presented in this section. In particular, in all cases a STS-DR estimator based on standard

kernel-based estimators of the respective nuisance functions would be asymptotically linear

under conditions on the order of the bias and the stochastic parts analogous to those in

Theorem 1 and Theorem 2(b)–(c).
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Partial Linear Model. Suppose that Z = (Y,X,W ), where Y is a scalar outcome variable

and both X and W are vectors of explanatory variables. Then a partially linear regression

model (e.g. Robinson, 1988) assumes that Y = λo(X) + W>θo + ε, where λo is a smooth

function, θo is a vector of parameters, and ε is an unobserved random variable that satisfies

E(ε|X,W ) = 0. Now let ξo1(x, θ) = E(Y −W>θ|X = x) and ξo2(x) = E(W |X = x). Then

ψPLM(Z, θ, ξ) = (Y −W>θ − ξ1(X, θ))(W − ξ2(X))

is a DR moment function for estimating θo. This model is a minor variation of our Case 1,

and it follows from the model structure and the assumption that E(ε|X,W ) = 0 that the

orthogonality condition (3.4) holds. The statement of Theorem 2(b) then applies analogously

to the STS-DR estimator under appropriately adapted regularity conditions. See Linton

(1995) for a similar result using different arguments. Note that the STS-DR estimator is

easily seen to be identical (up to trimming terms) to the estimator proposed by Robinson

(1988).

Policy Effects. Suppose that Z = (Y,X), where Y is a scalar outcome variable and X is a

vector of explanatory variables. Stock (1989) studies the problem of predicting the effect of a

change in the distribution of X to that of π(X), where π is some known policy function, on the

expectation of the outcome variable. Under certain assumptions, this parameter of interest is

given by θo = E(E(Y |X = x)|x=π(X)). Now let ξo1 = (ξo11, ξ
o
12), where ξo11(x) = E(Y |X = x),

ξo12(x) = E(Y |X = π(x)), and ξo2 = (ξo21, ξ
o
22), where ξo21(x) and ξo22(x) denote the densities of

X and π(X), respectively, at x. Then

ψPE(Z, θ, ξ) = ξ12(X) + (Y − ξ11(X)) ξ22

ξ21(X) − θ

is a DR moment function for estimating θo. This setup is a minor variation of our Case

2, the difference being that ξo1 and ξo2 each have more than one component. This however,

has no effect on the structure of the proof of Theorem 2(c), and thus its statement applies
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analogously to the STS-DR estimator here under appropriately adapted regularity conditions.

Weighted Average Derivatives. Suppose that Z = (Y,X), where Y is a scalar dependent

variable and X is a vector of continuously distributed explanatory variables with density

function ξo2. Then the weighted average derivative (WAD) of the regression function E(Y |X =

x) is defined as θo = E(w(X)∇xE(Y |X = x)|x=X), where w is a known scalar weight function.

WADs are important for estimating the coefficients in linear single-index models, and as a

summary measure of nonparametrically estimated regression functions more generally (e.g.

Powell et al., 1989; Newey and Stoker, 1993; Cattaneo et al., 2013). Let ξo11(x) = E(Y |X = x),

denote the density of X by ξo21(x), and denote the vectors of partial derivatives of those two

functions by ξo12(x) = ∂xξ
o
11(x) and ξo22(x) = ∂xξ

o
21(x), respectively. Then

ψWAD(Z, θ, ξ(X)) = w(X)ξ12(X)− (Y − ξ11(X))
(
∇xw(X) + w(X)ξ22(X)

ξ21(X)

)
− θ

is a DR moment function for estimating θo. This setup is a minor variation of our Case 2.

Both ξo1 and ξo2 again have more than one component, and in addition one of the components

is a derivative of a density or a conditional expectation, respectively. Again, it is easy to see

that this has no effect on the structure of the proof of Theorem 2(c), and thus its statement

applies analogously to the STS-DR estimator here under appropriately adapted regularity

conditions.

4. CONCLUSION

In this paper, we have explored the possibility of constructing semiparametric two-step

estimators as analogues of standard doubly robust estimators. We have shown that such

STS-DR estimators have favorable theoretical and practical properties relative to other

commonly used STS estimators. We have also shown that the DR property alone is unable

to generate estimators with similarly favorable properties. Instead, it needs to be combined

with an orthogonality condition on the estimation residuals from the nonparametric first
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stage, which we show to be satisfied in a wide range of models.

APPENDIX

A. REGULARITY CONDITIONS FOR MAIN RESULTS

In this Appendix, we collect the regularity conditions necessary to establish the statements

of Theorems 1 and 2.

A.1. Regularity Conditions for Theorem 1. The statement of the Theorem holds under

the following regularity conditions.

Assumption K1. (i) The kernel K is twice continuously differentiable; (ii)
∫
K(u)du = 1;

(iii)
∫
uK(u)du = 0; (iv)

∫
|u2K(u)|du < ∞; and (v) K(u) = 0 for u not contained in some

compact set, say [−1, 1].

Assumption MD1. (i) E(m(Y ∗, X, θo)) = 0 and E(m(Y ∗, X, θ)) 6= 0 for all θ ∈ Θ \ {θo},

with Θ ⊂ Rdθ a compact set and θo ∈ int(Θ), (ii) there exists a non-negative function b such

that |m(Y ∗, X, θ)| < b(Y ∗, X) with probability 1 for all θ ∈ Θ, and E(b(Y ∗, X)) < ∞, (iii)

m(Y ∗, X, θ) is continuous on Θ and continuously differentiable in an open neighborhood of

θo, (iv) E(‖m(Y ∗, X, θo)‖2) <∞ and, (v) supθ∈Θ E(‖∇θm(Y ∗, X, θ)‖) <∞.

Assumption MD2. (i) X is continuously distributed both unconditionally and conditional

on D = 1, with compact and convex support S(X) and S(X|D = 1), respectively; (ii)

the corresponding density functions are bounded, have bounded first order derivatives, and

are bounded away from zero, uniformly over S(X) and S(X|D = 1), respectively; (iii)

ξo2(x) is (l2 + 1)-times continuously differentiable; (iv) ξo1(x, θ) is (l1 + 1)-times continuously

differentiable in x for all θ ∈ Θ, and supx∈S(X|D=1) E(‖m(Y,X, θo)‖c|D = 1, X = x) <∞ for

some constant c > 6.

Assumption K1 describes a standard kernel function. The support restrictions on K could

be weakened to allow for kernels with unbounded support at the expense of a more involved
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notation. Assumption MD1 is a set of regularity conditions that ensures that a standard

Method-of-Moments estimator of θo would be
√
n-consistent and asymptotically normal in

the absence of missing data. Assumption MD2 collects a number of smoothness and regularity

conditions of the form commonly imposed in the context of nonparametric regression.

A.2. Regularity Conditions for Theorem 2. The statement of the Theorem holds under

Case 1 if Assumptions K1 and G1–G2 are satisfied, and under Case 2 if Assumptions K1–K2,

G1 and G3 are satisfied. Here Assumption K1 is as stated in the previous subsection, and all

other regularity conditions are as follows.

Assumption K2. (i) K∗ is twice continuously differentiable; (ii)
∫
K∗(u)du = 1; (iii)∫

ukK∗(u)du = 0 for k = 1, . . . , l2 + 1; (iv)
∫
|u2K∗(u)|du <∞; and (v) K∗(u) = 0 for u not

contained in some compact set, say [−1, 1].

Assumption G1. (i) The DR moment function ψ(z, θ, ξ(u)) is three times continuously

differentiable with respect to ξ(u), with derivatives that are uniformly bounded; (ii) there

exists α > 0 and an open neighborhood N (θo) of θo such that supθ∈N (θo) ‖∇θψ(Z, θ, ξ(U))−

∇θψ(Z, θ, ξo(U))‖ ≤ b(z)‖ξ − ξo‖α; (iii)) the matrix H = E(∇θψ(Z, θo, ξo(U)) has full rank.

Assumption G2. The following holds for g ∈ {1, 2}: (i) Ug is continuously distributed with

compact support S(Ug); (ii) Xg is continuously distributed with support S(Xg) ⊇ S(Ug);

(iii) the corresponding density functions are bounded, have bounded first order derivatives,

and are bounded away from zero uniformly over S(Ug); (iv) the function ξog is (lg + 1) times

continuously differentiable; (v) supu∈S(Ug) E(|Yg|c|Xg = u) <∞ for some constant c > 6.

Assumption G3. The statements of Assumption G2 hold for g = 2. In addition: (i) X1 and

U1 are continuously distributed with support S(X1) = Rd1 and S(U1) ⊇ S(X1), respectively;

(ii) the density function ξo1 of X1 has continuous and uniformly bounded derivatives up to

order (l1 + 1).
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Assumption K2 describes a standard higher-order kernel function, and Assumption G1

is analogous to Assumption MD1 above. Assumptions G2–G3 collect various smoothness

conditions that are standard in the literature on kernel-based nonparametric regression and

density estimation. Note that the restriction that X1 has unbounded support in Assump-

tion G3 can easily be weakened if instead a boundary kernel is used in the construction of

the estimator of ξo1. This would ensure a bias of uniform order O(hl1+1
1 ) without affecting the

basic structure of the stochastic part, which is all we need for the proof of the theorem.

B. PROOFS OF MAIN RESULTS

In this Appendix, we give the proofs of Theorems 1 and 2. We begin by stating two auxiliary

results about the rate of convergence of U -Statistics and a certain expansion of the local

polynomial regression estimator that are used repeatedly in this Appendix.

B.1. Rates of Convergence of U-Statistics. For a real-valued function ϕn(x1, . . . , xk)

and an i.i.d. sample {Xi}ni=1 of size n > k, the term

Un = (n− k)!
n!

∑
s∈S(n,k)

ϕn(Xs1 , . . . , Xsk)

is called a kth order U-statistic with kernel function ϕn, where the summation is over the

set S(n, k) of all n!/(n − k)! permutations (s1, . . . , sk) of size k of the elements of the set

{1, 2, . . . , n}. Without loss of generality, the kernel function ϕn can be assumed to be

symmetric in its k arguments. In this case, the U-statistic has the equivalent representation

Un =
(
n

k

)−1 ∑
s∈C(n,k)

ϕn(Xs1 , . . . , Xsk),

where the summation is over the set C(n, k) of all
(
n
k

)
combinations (s1, . . . , sk) of k of the

elements of the set {1, 2, . . . , n} such that s1 < . . . < sk. For a symmetric kernel function ϕn
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and 1 ≤ c ≤ k, we also define the quantities

ϕn,c(x1, . . . , xc) = E(ϕn(x1, . . . , xc, Xc+1, . . . , Xk)) and ρn,c = Var(ϕn,c(X1, . . . , Xc))1/2.

If ρn,c = 0 for all c ≤ c∗, we say that the kernel function ϕn is c∗th order degenerate. With this

notation, we give the following result about the rate of convergence of a kth order U-statistic

with a kernel function that potentially depends on the sample size n.

Lemma 1. Suppose that Un is a kth order U-statistic with symmetric and possibly sample

size dependent kernel function ϕn, and that ρn,k <∞. Then

Un − E(Un) = OP

(
k∑
c=1

ρn,c
nc/2

)
.

In particular, if the kernel ϕn is c∗th order degenerate, then

Un = OP

(
k∑

c=c∗+1

ρn,c
nc/2

)
.

Proof. The result follows from explicitly calculating the variance of Un (see e.g. Van der

Vaart, 1998), and an application of Chebyscheff’s inequality.

B.2. Stochastic Expansion of the Local Polynomial Estimator. Our proofs use a

particular stochastic expansion of the local polynomial regression estimators ξ̂g. This is a

minor variation of results given in e.g. Masry (1996) or Kong et al. (2010). We require the

following notation. For any s ∈ {0, 1, . . . , lg} let ns =
(
s+dg−1
dg−1

)
be the number of distinct

dg-tuples u with |u| = s. Arrange these dg-tuples as a sequence in a lexicographical order

with the highest priority given to the last position, so that (0, . . . , 0, s) is the first element

in the sequence and (s, 0, . . . , 0) the last element. Let τs denote this 1-to-1 mapping, i.e.

τs(1) = (0, . . . , 0, s), . . . , τs(ns) = (s, 0, . . . , 0). For each s ∈ {0, 1, . . . , lg} we also define a
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ns × 1 vector wgj,s(u) with its kth element given by ((Xgj − u)/hg)τs(k). Finally, we put

wgj(u) = (1, wgj,1(u)>, . . . , wgj,lg(u)>)>,

Mgn,i(u) = 1
n

n∑
j 6=i

wgj(u)wgj(u)>Khg(Xgj − u),

Ngn(u) = E(wgj(u)wgj(u)>Khg(Xgj − u)),

ηgn,j(u) = wgj(u)wgj(u)>Khg(Xgj − u)− E(wgj(u)wgj(u)>Khg(Xgj − u)).

To better understand this notation, note that for the simple case that lg = 0, i.e. when

ξ̂g is the Nadaraya-Watson estimator, we have that wgj(u) = 1, that the term Mgn,i(u) =

n−1∑
j 6=iKhg(Xgj − u) is the leave-one-out version of the usual Rosenblatt-Parzen density

estimator, that Ngn(u) = E(Khg(Xgi − u)) is its expectation, and that ηgn,j(u) = Khg(Xgj −

u) − E(Khg(Xgj − u)) is a mean zero stochastic term with variance of the order O(h−dgg ).

Also note that with this notation we can write the estimator ξ̂g(Ugi) as

ξ̂g(Ugi) = 1
n− 1

∑
j 6=i

e>1 Mgn(Ugi)−1wgj(Ugi)Khg(Xgj − Ugi)Ygj,

where e1 denotes the (1 + lgdg)-vector whose first component is equal to one and whose

remaining components are equal to zero. We also introduce the following quantities:

Bgn(Ugi) = e>1 Ngn(Ugi)−1E(wgj(Ugi)Khg(Xgj − Ugi)(ξo1(Xgj)− ξo1(Ugi))|Ugi)

Sgn(Ugi) = 1
n

∑
j 6=i

e>1 Ngn(Ugi)−1wgj(Ugi)Khg(Xgj − Ugi)εgj

Rgn(Ugi) = 1
n

∑
j 6=i

e>1

 1
n

∑
l 6=i

ηgn,l(Ugi)
Ngn(Ugi)−2wgj(Ugi)Khg(Xgj − Ugi)εgj

We refer to these three terms as the bias, and the first- and second-order stochastic terms,

respectively. Here εgj = Ygj− ξo1(Xgj) is the nonparametric regression residual, which satisfies

E(εgj|Xgj) = 0 by construction. To get an intuition for the behavior of the two stochastic
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terms, it is again instructive to consider simple case that lg = 0, for which

Sgn(Ugi) = 1
nf̄gn(Ugi)

∑
j 6=i

Khg(Xgj − Ugi)εgj and

Rgn(Ugi) = 1
nf̄gn(Ugi)2

 1
n

∑
l 6=i

(Khg(Xgl − Ugi)− f̄gn(Ugi))
∑

j 6=i
Khg(Xgj − Ugi)εgj

with E(Khg(Xgj − u)) = f̄gn(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions K1 and G1–G2 the following statements hold for g ∈ {1, 2}

if hg → 0 and log(n)/(nhdgg )→ 0 as n→∞:

(i) For odd lg ≥ 1 the bias Bgn satisfies

max
i∈{1,...,n}

|Bgn(Ugi)| = OP (hlg+1
g ),

and the first- and second-order stochastic terms satisfy

max
i∈{1,...,n}

|Sgn(Ugi)| = OP ((nhdgg / log n)−1/2) and max
i∈{1,...,n}

|Rgn(Ugi)| = OP ((nhdgg / log n)−1).

(ii) For any lg ≥ 0, we have that

max
i∈{1,...,n}

|ξ̂g(Ugi)− ξog(Ugi)−Bgn(Ugi)− Sgn(Ugi)−Rgn(Ugi)| = OP ((nhdgg / log n)−3/2).

(iii) For ‖ · ‖ a matrix norm, we have that

max
i∈{1,...,n}

‖n−1∑
j 6=i

ηgn,j(Ugi)‖ = OP ((nhdgg / log n)−1/2).

Proof. The statement about the bias in part (i) follows from standard Taylor expansion based

arguments. All remaining statements of the Lemma follow from well-known arguments in e.g.

Masry (1996) or Kong et al. (2010) for the usual “leave-in” version of the local polynomial

regression estimator. It therefore only remains to be shown that the difference between such

a “leave-in” estimator and the “leave-one-out” estimator that we consider in this paper is
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of sufficiently small order. To see this for the case of the statement about the first-order

stochastic term in part (i), let

S̃gn(u) = 1
n

∑
j

e>1 Ngn(u)−1wgj(u)Khg(Xgj − u)εgj

be the “leave-in” analogue of our first-order stochastic term, and note that

max
i∈{1,...,n}

|Sgn(Ugi)| ≤ max
i∈{1,...,n}

|Sgn(Ugi)− S̃gn(Ugi)|+ sup
u
|S̃gn(u)|

It follows from e.g. Masry (1996) or Kong et al. (2010) that

sup
u∈S(Ug)

|S̃gn(u)| = OP ((nhdgg / log n)−1/2).

Moreover, it holds that

max
i∈{1,...,n}

|Sgn(Ugi)− S̃gn(Ugi)| = max
i∈{1,...,n}

| 1
n
e>1 Ngn(Ugi)−1wgi(Ugi)Khg(Xgi − Ugi)εgi|

≤ max
i∈{1,...,n}

| 1
n
e>1 Ngn(Ugi)−1wgi(Ugi)Khg(Xgi − Ugi)| max

i∈{1,...,n}
|εgi|

= OP ((nhdgg )−1)× oP (n1/c),

with c as defined in Assumption 2. The desired result then follows from the restrictions on

the bandwidth in the statement of the theorem, and the restrictions on c from Assumption 2.

The remaining statements of the Lemma follow by similar arguments, and we hence omit the

details.

B.3. Proof of Theorem 2(b). Having stated the auxiliary results, we now turn to the proof

of Theorem 2(b). We give a proof of parts (a) and (c) below. For notational simplicity, we

drop the “DR” subscript of the estimator. It is straightforward to show that θ̂ p→ θo under

either condition (a), (b) or (c), and thus we omit the details of proving this step. From the
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differentiability of ψ with respect to θ and the definition of θ̂, it follows that

θ̂ − θo = Hn(θ∗, ξ̂)−1 1
n

n∑
i=1

ψ(Zi, θo, ξ̂1(U1i), ξ̂2(U2i))

for some θ∗ between θo and θ̂, and Hn(θ, ξ) = (1/n)∑n
i=1 ∂θψ(Zi, θ, ξ1(U1i), ξ2(U2i)). It then

follows from standard arguments that Hn(θ∗, ξ̂) = H + oP (1). Next, we expand

Ψn(θo, ξ̂) = n−1
n∑
i=1

ψ(Zi, θo, ξ̂1(U1i), ξ̂2(U2i)).

Using the notation that

ψ1
i = ∂ψ(Zi, θo, t, ξo2(U2i))/∂t|t=ξo1(Ui), ψ11

i = ∂2ψ(Zi, θo, t, ξo2(U2i))/∂t|t=ξo1(U1i),

ψ2
i = ∂ψ(Zi, θo, ξo1(U1i), t)/∂t|t=ξo2(U2i), ψ22

i = ∂2ψ(Zi, θo, ξo1(U1i), t)/∂t|t=ξo2(U2i), and

ψ12
i = ∂2ψ(Zi, θo, t1, t2)/∂t1∂t2|t1=ξo1(U1i),t2=ξo2(U2i),

we find that because of differentiability conditions on the moment function ψ we have that

Ψn(θo, ξ̂)−Ψn(θo, ξo) = 1
n

n∑
i=1

ψ1
i (ξ̂1(U1i)− ξo1(U1i)) + 1

n

n∑
i=1

ψ2
i (ξ̂2(U2i)− ξo2(U2i))

+ 1
n

n∑
i=1

ψ11
i (ξ̂1(U1i)− ξo1(U1i))2 + 1

n

n∑
i=1

ψ22
i (ξ̂2(U2i)− ξo2(U2i))2

+ 1
n

n∑
i=1

ψ12
i (ξ̂1(U1i)− ξo1(U1i))(ξ̂2(U2i)− ξo2(U2i))

+OP (‖ξ̂1 − ξo1‖3
∞) +OP (‖ξ̂2 − ξo2‖3

∞).

By Lemma 2(i), the two “cubic” remainder terms are both of the order oP (n−1/2) under the

conditions of Theorem 2(b), and thus also under those of Theorem 2(a). In Lemma 3–5

below, we show that the remaining five terms on the right hand side of the previous equation

are also all of the order oP (n−1/2) under the conditions of Theorem 2(b). The asymptotic

normality result then follows from a simple application of the Central Limit Theorem.

The proofs of the following Lemmas repeatedly use the result that the smoothness
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conditions on the moment function ψ combined with the DR property imply that

0 = E(ψ1
i λ1(U1i)) = E(ψ11

i λ1(U1i)2) = E(ψ2
i λ2(U2i)) = E(ψ22

i λ2(U2i)2) (B.1)

for all functions λ1 and λ2 such that ξo1 + tλ1 ∈ Ξ1 and ξo2 + tλ2 ∈ Ξ2 for any t ∈ R with |t|

sufficiently small. To see why that is the case, consider the first equality (the argument is

similar for the remaining ones). By dominated convergence, we have that

E(ψ1
i λ1(U1i)) = lim

t→0

Ψ(θo, ξo1 + tλ1, ξ
o
2)−Ψ(θo, ξo1, ξo2)
t

= 0

where the last equality follows since the numerator is equal to zero by the DR property.

Lemma 3. Under the conditions of Theorem 2(b), the following statements hold:

(i) 1
n

n∑
i=1

ψ1(Zi)(ξ̂1(U1i)− ξo1(U1i)) = oP (n−1/2),

(ii) 1
n

n∑
i=1

ψ2(Zi)(ξ̂2(U2i)− ξo2(U2i)) = oP (n−1/2).

Proof. We show the statement for a generic g ∈ {1, 2}. From Lemma 2 and the restrictions

on the bandwidth, it follows that

1
n

n∑
i=1

ψgi (ξ̂g(Ugi)− ξog(Ugi)) = 1
n

n∑
i=1

ψgi (Bgn(Ugi) + Sgn(Ugi) +Rgn(Ugi))

+OP (log(n)3/2n−3/2h−3dg/2
g ),

and since the second term on the right-hand side of the previous equation is of the order

oP (n−1/2) due to the restrictions on the bandwidth, it suffices to study the first term. As a

first step, we find that

1
n

n∑
i=1

ψgiBgn(Ugi) = E(ψgiBgn(Ugi)) +OP (hlg+1
g n−1/2) = OP (hlg+1

g n−1/2),

where the first equality follows from Chebyscheff’s inequality, and the second equality follows

from Lemma 2 and the fact that by equation (B.1) we have that E(ψgiBgn(Ugi)) = 0. Next,
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consider the term

1
n

n∑
i=1

ψgi Sgn(Ugi) = 1
n2

∑
i

∑
j 6=i

ψgi e
>
1 Ngn(Ugi)−1wgj(Ugi)Khg(Xgj − Ugi)εgj.

This is a second order U-Statistic (up to a bounded, multiplicative term), and since by

equation (B.1) we have that E(ψgi e>1 Ngn(Ugi)−1wgj(Ugi)Khg(Xgj −Ugi)|Xgj) = 0, its kernel is

first-order degenerate. Lemma 1 and some simple variance calculations then imply that

1
n

n∑
i=1

ψgi Sgn(Ugi) = OP (n−1h−dg/2g ).

Finally, we consider the term

1
n

n∑
i=1

ψgiRgn(Ugi) = Tn,1 + Tn,2,

where

Tn,1 = 1
n3

∑
i

∑
j 6=i

ψgi e
>
1 ηgn,j(Ugi)Nn(u)−2wgj(Ugi)Khg(Xgj − Ugi)εgj and

Tn,2 = 1
n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψgi e
>
1 ηgn,j(Ugi)Nn(Ugi)−2wgl(Ugi)Khg(Xgl − Ugi)εgl.

Using equation (B.1), one can see that Tn,2 is equal to a third-order U-Statistic (up to a

bounded, multiplicative term) with second-order degenerate kernel, and thus

Tn,2 = OP (n−3/2h−dgg )

by Lemma 1 and some simple variance calculations. On the other hand, the term Tn,1 is

equal to n−1 times a second order U-statistic (up to a bounded, multiplicative term), with

first-order degenerate kernel, and thus

Tn,1 = n−1 ·OP (n−1h−3dg/2
g )) = n−1/2h−dg/2g OP (Tn,2).

The statement of the lemma thus follows if hg → 0 and n2h3dg
g →∞ as n→∞, which holds
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due to the restrictions on the bandwidth. This completes our proof.

Remark 4. Without any restrictions on the structure of the moment condition, the term

n−1∑n
i=1 ψ

g
iBgn(Ugi) in the above proof would be of the larger order O(hlg+1

g ), which is the

usual order of the bias due to smoothing the nonparametric component. The fact that DR

moment condition has a zero functional derivative with respect to the nuisance functions is

what removes this term here. Note however that there are also non-DR moment conditions

with this property, such as those where the corresponding moment function is an influence

function in the underlying semiparametric model.

Lemma 4. Under the conditions of Theorem 2(b), the following statements hold:

(i) 1
n

n∑
i=1

ψ11
i (ξ̂1(U1i)− ξo1(U1i))2 = oP (n−1/2),

(ii) 1
n

n∑
i=1

ψ22
i (ξ̂2(U2i)− ξo2(U2i))2 = oP (n−1/2).

Proof. We show the statement for a generic g ∈ {1, 2}. Note that by Lemma 2 we have that

(ξ̂g(u)− ξog(u))2 =
6∑

k=1
Tn,k(u) +OP

( log(n)
nh

dg
g

)3/2
(OP (hlg+1

g ) +OP

(
log(n)
nhg

))
,

where Tn,1(u) = Bgn(u)2, Tn,2(u) = Sgn(u)2, Tn,3(u) = Rgn(u)2, Tn,4(u) = 2Bgn(u)Sgn(u),

Tn,5(u) = 2Bgn(u)Rgn(u), and Tn,6(u) = 2Sgn(u)Rgn(u). Since the second term on the

right-hand side of the previous equation is of the order oP (n−1/2) due to the restrictions on

the bandwidth, it suffices to show that we have that n−1∑n
i=1 ψ

gg
i Tn,k(Ugi) = oP (n−1/2) for

k ∈ {1, . . . , 6}. Our proof proceeds by obtaining sharp bounds on n−1∑n
i=1 ψ

gg
i Tn,k(Ugi) for

k ∈ {1, 2, 4, 5} using equation B.1 and Lemma 1, and crude bounds for k ∈ {3, 6} simply

using the uniform rates derived in Lemma 2. First, for k = 1 we find that

1
n

n∑
i=1

ψggi Tn,1(Ugi) = E(ψggi Bgn(Ugi)2) +OP (n−1/2h2lg+2
g ) = OP (n−1/2h2lg+2

g )
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because E(ψggi Bgn(Ugi)2) = 0 by equation (B.1). Second, for k = 2 we can write

1
n

n∑
i=1

ψggi Tn,2(Ugi) = Tn,2,A + Tn,2,B

where

Tn,2,A = 1
n3

∑
i

∑
j 6=i

ψggi (e>1 Ngn(Ugi)−1wgj(Ugi))2Khg(Xgj − Ugi)2ε2
gj

Tn,2,B = 1
n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψggi e
>
1 Ngn(Ugi)−1wgj(Ugi)Khg(Xgj − Ugi)εgj

· e>1 Ngn(Ugi)−1wgl(Ugi)Khg(Xgl − Ugi)εgl

Using equation (B.1), one can see that Tn,2,B is equal to a third-order U-Statistic with a

second-order degenerate kernel function (up to a bounded, multiplicative term), and thus

Tn,2,B = OP (n−3/2h−dgg ).

On the other hand, the term Tn,2,A is (up to a bounded, multiplicative term) equal to n−1

times a mean zero second order U-statistic with non degenerate kernel function, and thus

Tn,2,A = n−1OP (n−1/2h−dg + n−1h−3dg/2
g ) = OP (n−3/2h−dg) = OP (Tn,2,B).

Third, for k = 4 we use again equation (B.1) and Lemma 1 to show that

1
n

n∑
i=1

ψggi Tn,4(Ugi) = 1
n2

n∑
i=1

∑
j 6=i

ψggi Bgn(Ugi)e>1 Ngn(Ugi)−1wgj(Ugi)Khg(Xgj − Ugi)εgj

= OP (n−1h−dg/2g ) ·O(hlg+1
g ),

where the last equality follows from the fact that n−1∑n
i=1 ψ

gg
i Tn,4(Ugi) is (again, up to a

bounded, multiplicative term) equal to a second order U-statistic with first-order degenerate

kernel function. Fourth, for k = 5, we can argue as in the final step of the proof of Lemma 3
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to show that

1
n

n∑
i=1

ψ11(Zi)Tn,5(Ugi) = OP (n−3/2h−dgg hlg+1
g ).

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1
n

n∑
i=1

ψggi Tn,3(Ugi) = OP (‖Rgn‖2
∞) = OP (log(n)2n−2h−2dg

g ),

1
n

n∑
i=1

ψggi Tn,6(Ugi) = OP (‖Rgn‖∞) ·OP (‖Sgn‖∞) = OP (log(n)3/2n−3/2h−3dg/2
g ).

The statement of the lemma thus follows if hg → 0 and n2h3dg
g / log(n)3 → ∞ as n → ∞,

which holds due to the bandwidth restrictions. This completes our proof.

Remark 5. Without the DR property, the term Tn,2,B in the above proof would be (up to a

bounded, multiplicative term) equal to a third-order U-Statistic with a first-order degenerate

kernel function (instead of a second order one). In this case, we would find that

Tn,2,B = OP (n−1h−dg/2g ) +OP (n−3/2h−dgg ) = OP (n−1h−dg/2g ).

On the other hand, in the absence of the DR property, the term Tn,2,A would be (up to a

bounded, multiplicative term) equal to n−1 times a non-mean-zero second-order U-Statistic

with a non-degenerate kernel function, and thus we would have

Tn,2,A = O(n−1h−dgg ) +OP (n−3/2h−dgg ) +OP (n−2h−2dg
g ) = O(n−1h−dgg ) + oP (n−1h−dgg ).

The leading term of an expansion of the sum Tn,2,A + Tn,2,B would thus be a pure bias term

of order n−1h−dgg . This term is analogous to the “degrees of freedom bias” in Ichimura and

Linton (2005), and the “nonlinearity bias” or “curse of dimensionality bias” in Cattaneo

et al. (2013). In our context, the DR property of the moment conditions removes this term,

which illustrates how our structure acts like a bias correction method. For a non-DR moment

condition based on an influence function this term would not vanish.
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Lemma 5. Under the conditions of Theorem 2(b), the following statement holds:

1
n

n∑
i=1

ψ12
i (ξ̂1(U1i)− ξo1(U1i))(ξ̂2(U2i)− ξo2(U2i)) = oP (n−1/2).

Proof. By Lemma 2, one can see that uniformly over u = (u1, u2) we have that

(ξ̂1(u1)− ξo1(u1))(ξ̂2(u2)− ξo2(u2))

=
9∑

k=1
Tn,k(u) +OP

( log(n)
nhd1

1

)3/2
(OP (hl2+1

2 ) +OP

(
log(n)
nhd2

2

))

+OP

( log(n)
nhd2

2

)3/2
(OP (hl1+1

1 ) +OP

(
log(n)
nhd1

1

))

where Tn,1(u) = B1,n(u1)B2,n(u2), Tn,2(u) = B1,n(u1)S2,n(u2), Tn,3(u) = B1,n(u1)R2,n(u2),

Tn,4(u) = S1,n(u1)B2,n(u2), Tn,5(u) = S1,n(u1)S2,n(u2), Tn,6(u) = S1,n(u1)R2,n(u2), Tn,7(u) =

R1,n(u1)B2,n(u2), Tn,8(u) = R1,n(u1)S2,n(u2), and Tn,9(u) = R1,n(u1)R2,n(u2). Since the last

two terms on the right-hand side of the previous equation are easily of the order oP (n−1/2)

due to the restrictions on the bandwidth, it suffices to show that for any for k ∈ {1, . . . , 9}

we have that n−1∑n
i=1 ψ

12
i Tn,k(Ui) = oP (n−1/2). As in the proof of Lemma 4, we proceed by

obtaining sharp bounds on n−1∑n
i=1 ψ

12
i Tn,k(Ui) for k ∈ {1, . . . , 5, 7} using a similar strategy

as in the proofs above, and crude bounds for k ∈ {6, 8, 9} simply using the uniform rates

derived in Lemma 2. First, arguing as in the proof of Lemma 3 and 4 above, we find that

1
n

n∑
i=1

ψ12
i Tn,1(Ui) = E(ψ12

i B1,n(U1i)B2,n(U2i)) +OP (n−1/2hl1+1
1 hl2+1

2 ) = OP (hl1+1
1 hl2+1

2 ),

where the last equation follows from the fact that E(ψ12
i B1,n(U1i)B2,n(U2i)) = O(hl1+1

1 hl2+1
2 ).

Second, for k = 2 we consider the term

1
n

∑
i

ψ12
i Tn,2(Ui) = 1

n2

∑
i

∑
j 6=i

ψ12
i B1,n(U1i)e>1 N2,n(U2i)−1w2j(U2i)Kh2(X2,j − U2i)ε2,j.

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with
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non-degenerate kernel function. Lemma 1 and some variance calculations then imply that

1
n

∑
i

ψ12
i Tn,2(Ui) = OP (n−1/2hl1+1

1 ) +OP (n−1h
−d2/2
2 hl1+1

1 ).

Using the same argument, we also find that

1
n

∑
i

ψ12
i Tn,4(Ui) = OP (n−1/2hl2+1

2 ) +OP (n−1h
−d1/2
1 hl2+1

2 ).

For k = 3, we can argue as in the final step of the proof of Lemma 3 to show that

1
n

n∑
i=1

ψ12
i Tn,3(Ui) = OP (n−1h

−d2/2
2 hl1+1

1 ) +OP (n−3/2h−d2
2 hl1+1

1 ),

and for the same reason we find that

1
n

n∑
i=1

ψ12
i Tn,7(Ui) = OP (n−1h

−d1/2
1 hl2+1

2 ) +OP (n−3/2h−d1
1 hl2+1

2 ).

Next, we consider the case k = 5. This term is the only one for which we exploit the

condition (3.4). We start by considering the decomposition

1
n

∑
i

ψ12
i Tn,5(Ui) = Tn,5,A + Tn,5,B,

where

Tn,5,A = 1
n3

∑
i

∑
j 6=i

ψ12
i (e>1 N1,n(U1i)−1w1j(U1i)Kh1(X1j − U1i)ε1j)

· (e>1 N2,n(U2i)−1w2j(U2i)Kh2(X2j − U2i)ε2j),

Tn,5,B = 1
n3

∑
i

∑
j 6=i

∑
l 6=i,j

ψ12
i e
>
1 N1n(U1i)−1w1j(U1i)Kh1(X1,j − U1i)ε1j

· e>1 N2,n(U2i)−1w2l(U2i)Kh2(X2l − U2i)ε2l.

Here term Tn,5,B is equal to a third-order U-Statistic (up to a bounded, multiplicative term)

with first-order degenerate kernel. Finding the variance of this U-Statistic is slightly more

involved, as it depends on the number of joint components of U1 and U2. Using Lemma 1
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and some tedious calculations, we obtain the following bound:

Tn,5,B = OP (n−1 max{h−d1/2
1 , h

−d2/2
2 }) +OP (n−3/2h

−d1/2
1 h

−d2/2
2 ).

This bound is sufficient for our purposes. Since this step of the proof is important, we are

providing some more details about this calculation. Let λijl = Kh1(X1j − U1i)ε1jKh2(X2l −

U2i)ε2l. It is easy to see that the variance of T̃n,5,B = n−3∑
i

∑
j 6=i

∑
l 6=i,j λijl is of the same

order as Tn,5,B, and thus we focus on the former. Define Zi = (U1i, U2i), Zj = (X1j, ε1j)

and Zl = (X1l, ε1l). It is easy to see that for distinct values of i, j and l we have that

E(λijl) = E(λijl|Zi) = E(λijl|Zj) = E(λijl|Zl) = 0, and thus T̃n,5,B has mean zero and

first-order degenerate kernel. It also holds that E(λijl|Zi,Zj) = E(λijl|Zi,Zl) = 0. Using the

notation from Lemma 1, we thus have that

ρ2
n,2 = Var(E(λijl|Zl,Zj)) = Var

(∫
Kh1(X1j − u1)Kh2(X2l − u2)fU(u1, u2)du1du2ε1jε2l

)
.

The order of ρn,2 thus depends on the number of joint components of U1 and U2, or, more

precisely, the effective dimension of the support of (U1, U2). The “best case” would be that

(U1, U2) has effective support of dimension d1 + d2, in which case ρn,2 = O(1). The “worst

case” would be that U1 = U2, in which case ρn,2 = O(max{h−d1/2
1 , h

−d2/2
2 }). This “worst case”

bound is sufficient for our purposes. Now consider

ρ2
n,3 = Var(E(λijl|Zi,Zj,Zl))

= E
(
h−2d1

1 K((X1j − U1i)/h1)2h−2d2
2 K((X2l − U2i)/h2)2ε2

1jε
2
2l

)
= O(h−d1

1 h−d2
2 ).

From Lemma 1 we then obtain the desired result that

T̃n,5,B = OP (n−1ρn,2) +OP (n−3/2ρn,3)

= OP (n−1 max{h−d1/2
1 , h

−d2/2
2 }) +OP (n−3/2h

−d1/2
1 h

−d2/2
2 ),

Now consider the term Tn,5,A, which is equal to n−1 times a second order U-statistic (up
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to a bounded, multiplicative term). Since condition (3.4) implies that E(ε1ε2|X1, X2) = 0,

we find that this U-Statistic has mean zero. The calculation of its variance is again slightly

more involved, and the exact result depends on the number of joint components of U1 and

U2, and on the number of joint components of X1 and X2. After some calculations similar to

those detailed above, we obtain the bound that

Tn,5,A = n−1 ·OP (n−1/2 max{h−d1
1 , h−d2

2 }+OP (n−1 max{h−d1/2
1 h−d2

2 , h−d1
1 h

−d2/2
2 }))

= n−1/2OP (max{nh−d1
1 , nh−d2

2 }+ max{n−1/2h
−d1/2
1 nh−d2

2 , nh−d1
1 n−1/2h

−d2/2
2 })

= oP (n−1/2)

under our restrictions on the bandwidths (in fact, our restrictions imply the much stronger

result that Tn,5,A = OP (n−5/6)). We again provide some more details about this calculation.

Let λij = Kh1(X1j − U1i)ε1jKh2(X2j − U2i)ε2j. It is easy to see that T̃n,5,A = n−3∑
i

∑
j 6=i λij

is of the same order as Tn,5,A, and thus we focus on the former. Define Zi = (U1i, U2i) and

Zj = (X1j, X2j, ε1j, ε2j). We then have that for i 6= j

E(λij) = E[E(ε1jε2j|Zi, Xj)Kh1(X1j − U1i)Kh2(X2j − U2i)]

= E[E(ε1jε2j|Xj)Kh1(X1j − U1i)Kh2(X2j − U2i)] = 0,

where the last equality follows from (3.4) and the fact that the data are i.i.d. Hence T̃n,5,A is

mean zero. We also clearly have that E(λij|Zi) = 0. Using notation from Lemma 1, it then

follows that

ρ2
n,1 = Var(E(λij|Zj)) = Var(

∫
Kh1(X1j − u1)Kh2(X2j − u2)fU(u1, u2)du1du2ε1jε2j)

The order of ρn,1 thus depends on the number of joint components of U1 and U2, and of X1

and X2; or, more precisely, the effective dimension of the support of (U1, U2) and (X1, X2).

The “best case” would be that (U1, U2) has effective support of dimension d1 + d2, in which
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case ρn,1 = O(1). The “worst case” would be that U1 = U2 and X1 = X2, in which case

ρn,1 = O(max{h−d1
1 , h−d2

2 }). This “worst case” bound is sufficient for our purposes. Now

consider

ρ2
n,2 = Var(E(λij|Zl,Zj)) = E

(
h−2d1

1 K((X1j − U1i)/h1)2h−2d2
2 K((X2j − U2i)/h2)2ε2

1jε
2
2j

)
.

Under the “worst case” scenario that U1 = U2 and X1 = X2 we then find that

ρ2
n,2 = O(max{h−d1

1 h−2d2
2 , h−2d1

1 h−d2
2 }).

From Lemma 1 we then obtain the desired result that

T̃n,5,A = n−1
(
OP (n−1/2ρn,1) +OP (n−1ρn,2)

)
= OP (n−3/2 max{h−d1

1 , h−d2
2 }) +OP (n−2 max{h−d1/2

1 h−d2
2 , h−d1

1 h
−d2/2
2 }).

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2 for the

following terms:

1
n

n∑
i=1

ψ12
i Tn,6(Ui) = OP (‖S1,n‖∞) ·OP (‖R2,n‖∞) = OP (log(n)5/2n−5/2h−d1

1 h
−3d2/2
2 ),

1
n

n∑
i=1

ψ12
i Tn,8(Ui) = OP (‖R1,n‖∞) ·OP (‖S2,n‖∞) = OP (log(n)5/2n−5/2h−d2

2 h
−3d1/2
1 ),

1
n

n∑
i=1

ψ12
i Tn,9(Ui) = OP (‖R1,n‖∞) ·OP (‖R2,n‖∞) = OP (log(n)3n−3h

−3d1/2
1 h

−3d2/2
2 ).

The statement of the Lemma then follows from the restrictions on the bandwidth. This

completes our proof.

Remark 6. The derivation of the order of the term Tn,5,A is the only step in our proof

that requires the orthogonality condition (3.4). Without this condition, the kernel of the

respective U-Statistic would not be mean zero, and in general we would only find that

Tn,5,A = OP (n−1 max{h−d1
1 , h−d2

2 }).
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B.4. Proof of Theorem 2(a). This result can be shown by following the steps of the proof

of Theorem 2(b), and adapting the argument as indicated in the Remarks 4–6.

B.5. Proof of Theorem 2(c). The difference between Case 1 and Case 2 is that ξo1 is now

a density function. This actually simplifies the problem, as a stochastic expansion of the kind

given in Lemma 2 is easier to obtain and of a substantially simpler form for kernel density

estimators relative to the local polynomial estimator. In particular, it is easy to see that

under the conditions of the Theorem we have that

ξ̂1(Xi) = ξo1(Xi) +B1(Xi) + S1(Xi)

Here B1(Xi) = E(Kh(U1 −Xi)|Xi) = O(hl+1) is a deterministic bias function and S1(Xi) =∑
j 6=i(Kh(U1j−Xi)−E(Kh(U1−Xi)|Xi))/n = OP ((nhd/ log(n))−1/2) is a mean zero stochastic

term. The proof then follows from using the same arguments as in the one of Theorem 2(b),

but using this simpler expansion of the kernel density estimator.

B.6. Proof of Theorem 1. The estimator has the same structure as the one studied in

Theorem 2(b), and thus the statement follows from the same kind of arguments. Note that

the condition (3.4) is satisfied here since

E(D(m(Y,X, θo)− E(m(Y,X, θo)|D = 1, X)) · (D − E(D|X))|X)

= E((m(Y,X, θo)− E(m(Y,X, θo)|D = 1, X))|D = 1, X) · (1− E(D|X)) · E(D|X) = 0.

by the Law of Iterated Expectations.

C. ADDITIONAL SIMULATIONS

In this section, we consider again the simulation study in Section 2.4 in the main text. In

particular, we study how the performance of the estimators considered in Section 2.4 changes

in response to changes in the the distribution of the covariate X, which is uniform on [0, 1]
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in the main text. Specifically, we consider a symmetric triangular distribution, a Beta(2,4)

distribution, and a Beta(4,2) distribution. The three alternative distributions differ from a

uniform one in that their density is not bounded away from zero over their support; and the

latter two are also asymmetric. All other aspects of the data generating process remain the

same (but of course the implied values of θo and ΣMD change accordingly).

In Figures 2–5 we plot the simulated MSE, absolute bias and variance of the kernel-based

IPW estimator against the results for the kernel-based STS-DR estimator. For convenience,

Figure 2 replicates the results for the uniform covariate distribution from the main text,

while Figures 3–5 show results for a triangular, a Beta(2,4), and a Beta(4,2) distribution,

respectively. As one can see, the results are very similar qualitatively. In particular, the value

of the MSE of the STS-DR estimator as a function of the two bandwidths is rather flat over

the range of bandwidths considered here for all simulation designs (there is a spike in the

MSE of the STS-DR estimator for very small values of the bandwidth used to estimate the

propensity score in case of the triangular and the Beta(4,2) covariate distribution, but it is

much less pronounced than the one of the IPW estimator). Our exercise thus shows that

the findings reported in Section 2.4 are not an artifact of the specific covariate distribution

considered there.
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Figure 2: Simulation results for U ∼ U [0, 1]: MSE, absolute bias and variance of θ̂IPW−K for
various values of h2 (bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).

Figure 3: Simulation results for U ∼ Triangular[0, 1]: MSE, absolute bias and variance of θ̂IPW−K
for various values of h2 (bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal
to .05 (short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long
dashed dotted line), and .5 (thin solid line).
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Figure 4: Simulation results for U ∼ Beta(2, 4): MSE, absolute bias and variance of θ̂IPW−K for
various values of h2 (bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).

Figure 5: Simulation results for U ∼ Beta(4, 2): MSE, absolute bias and variance of θ̂IPW−K for
various values of h2 (bold solid line), compared to results for θ̂DR−K with bandwidth h1 equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).
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Table 2: Simulation results for IPW: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

h2 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h1)

.05 .08 .13 .20 .32 .50

θ̂IPW−K
.05 .489 .398 .330 .832 .826 .823 .826 .843 .868
.08 .373 .329 .265 .872 .870 .869 .871 .885 .903
.13 .323 .289 .239 .885 .884 .883 .884 .895 .911
.20 .268 .189 .232 .908 .906 .906 .907 .914 .926
.32 .229 .022 .229 .926 .924 .924 .923 .928 .937
.50 .288 .245 .228 .878 .879 .878 .876 .879 .887

h2 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h1)

.05 .08 .13 .20 .32 .50

θ̂IPW−TK
.05 .639 .282 .560 .825 .801 .840 .921 .993 .788
.08 .934 .020 .934 .761 .734 .774 .885 .990 .698
.13 .788 .205 .747 .756 .729 .773 .899 .988 .669
.20 .646 .176 .615 .810 .786 .832 .935 .994 .744
.32 .397 .354 .272 .903 .879 .920 .980 1.000 .860
.50 .252 .153 .229 .938 .929 .944 .980 .998 .909

h2 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h1)

1 2 3 4 7 10

θ̂IPW−OS
1 .497 .515 .232 .744 .725 .731 .730 .726 .725
2 .244 .063 .240 .934 .912 .914 .912 .909 .909
3 .232 .028 .231 .950 .926 .924 .923 .920 .919
4 .221 .009 .221 .954 .928 .928 .926 .924 .924
7 .222 .011 .222 .951 .929 .929 .928 .925 .923

10 .236 .028 .236 .942 .919 .921 .919 .916 .914

h2 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h1)

.50 .65 .80 .95 1.10 1.25

θ̂IPW−SP
.50 .359 .339 .244 .818 .821 .824 .826 .827 .837
.65 .252 .170 .223 .894 .897 .900 .901 .901 .909
.80 .226 .077 .220 .913 .916 .919 .920 .922 .930
.95 .233 .025 .232 .913 .915 .916 .918 .919 .931

1.10 .258 .181 .225 .889 .893 .897 .898 .899 .908
1.25 .613 .633 .212 .644 .647 .651 .652 .648 .651

h2 n×MSE
√

n×BIAS n×VAR Coverage Rate

θ̂IPW−BS
.05 .271 .011 .271 0.95
.08 .301 .062 .298 0.96
.13 .328 .185 .294 0.96
.20 .275 .156 .251 0.95
.32 .264 .209 .220 0.91
.50 .512 .552 .207 0.74

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and
bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the
interquartile range were removed for the computation of the summary statistics.
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Table 3: Simulation results for REG: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

h1 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h2)

.05 .08 .13 .20 .32 .50

θ̂REG−K
.05 .210 .052 .207 .948 .945 .943 .940 .936 .932
.08 .227 .136 .208 .938 .936 .934 .929 .926 .923
.13 .282 .266 .211 .910 .907 .905 .901 .896 .889
.20 .308 .303 .216 .892 .889 .888 .882 .877 .873
.32 .211 .030 .210 .952 .950 .948 .944 .940 .935
.50 .295 .313 .197 .923 .920 .914 .906 .895 .884

h1 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h2)

.05 .08 .13 .20 .32 .50

θ̂REG−TK
.05 .926 .021 .925 .837 .829 .826 .831 .836 .822
.08 .643 .011 .643 .871 .863 .858 .866 .869 .857
.13 .856 .152 .833 .897 .892 .888 .893 .894 .884
.20 3.713 .496 3.467 .816 .810 .809 .819 .827 .806
.32 8.592 .281 8.514 .993 .989 .981 .986 .991 .987
.50 .228 .157 .203 .949 .938 .931 .938 .942 .927

h1 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h2)

1 2 3 4 7 10

θ̂REG−OS
1 .612 .652 .187 .671 .731 .749 .747 .751 .753
2 .204 .081 .197 .931 .938 .940 .941 .940 .942
3 .203 .016 .203 .931 .936 .939 .939 .940 .940
4 .203 .009 .203 .930 .934 .936 .937 .938 .940
7 .206 .001 .206 .926 .931 .932 .931 .931 .932

10 .218 .004 .217 .919 .926 .926 .927 .927 .927

h1 n×MSE
√

n×BIAS n×VAR
Coverage Rate (h2)

.50 .65 .80 .95 1.10 1.25

θ̂REG−SP
.50 .209 .004 .209 .925 .926 .927 .927 .925 .920
.65 .205 .003 .205 .932 .932 .931 .931 .929 .925
.80 .203 .003 .203 .934 .935 .934 .935 .932 .927
.95 .201 .006 .200 .937 .937 .939 .939 .935 .929

1.10 .203 .091 .195 .936 .937 .938 .938 .935 .928
1.25 .331 .381 .186 .864 .868 .870 .872 .862 .837

h1 n×MSE
√

n×BIAS n×VAR Coverage Rate

θ̂REG−BS
.05 .210 .050 .207 0.94
.08 .227 .134 .209 0.93
.13 .282 .267 .211 0.90
.20 .311 .309 .216 0.89
.32 .212 .038 .210 0.94
.50 .290 .305 .197 0.87

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and
bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the
interquartile range were removed for the computation of the summary statistics.
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