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Abstract

An estimator of a finite-dimensional parameter is said to be doubly robust (DR)
if it imposes parametric specifications on two unknown nuisance functions, but only
requires that one of these two specifications is correct in order for the estimator to be
consistent for the object of interest. In this paper, we study versions of such estimators
that use local polynomial smoothing for estimating the nuisance functions. We show
that such semiparametric two-step (STS) versions of DR estimators have favorable
theoretical and practical properties relative to other commonly used STS estimators.
We also show that these gains are not generated by the DR property alone. Instead, it
needs to be combined with an orthogonality condition on the estimation residuals from

the nonparametric first stage, which we show to be satisfied in a wide range of models.
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1. INTRODUCTION

An estimator of a finite-dimensional parameter in a semiparametric model is said to be doubly
robust (DR) if it imposes parametric specifications on two unknown nuisance functions,
and is consistent if at most one of these two specifications is incorrect (e.g. Scharfstein,
Rotnitzky, and Robins, 1999; Robins and Rotnitzky, 2001). Such estimators, which feature
prominently in the literature on missing data and causal inference models, achieve their
eponymous property by combining estimates of the two unknown nuisance functions in a
particular way. To illustrate that property, consider a simple missing data model where X is
a vector of covariates that is always observed, and Y™ is a scalar outcome variable that is
observed if D = 1, and unobserved if D = 0. The data consist of a random sample of size
n from the distribution of Z = (Y, X, D), where Y = DY*, and the parameter of interest
is 0° = E(Y™*). Assume that the data are missing at random, so E(D|Y™*, X) = E(D|X),
and define the regression function £9(z) = E(Y|D = 1, X = x) and the propensity score
£9(x) = E(D|X = z). Then one well-known class of DR estimators of 6° is of the form

where 51 and 52 are estimates of £ and &, respectively, based on “working” parametric
models for these two functions.! Alternative estimators of #°, which only require an estimate
of one of the two nuisance functions, include the regression-adjustment (REG) or the Inverse

Probability Weighting (IPW) estimator, defined as

~ 1 &~ ~ 1 & DY,
QREG = — fl(XZ) and QIPW = — #, (12)
”; HZ;SZ(Xi)

!The construction (1.1) is generally referred to as an Augmented Inverse Probability Weighting (AIPW)
estimator in the DR literature (Robins, Rotnitzky, and Zhao, 1994). There are other ways to construct
estimators with a DR property in such setups (e.g. Wooldridge, 2007; Graham, Pinto, and Egel, 2012;
Vermeulen and Vansteelandt, 2015). We focus on “AIPW-type” estimators in the following.




respectively. In general, the latter estimators are only consistent if the “working” parametric
model for the respective nuisance function is correctly specified, whereas for Opr to be
consistent it suffices that either of the two specifications is correct.

This paper considers the properties of estimators following a construction like (1.1) when
the nuisance functions are estimated nonparametrically via local polynomial smoothing. Such
estimators fall within the class of semiparametric two-stage (STS) estimators (e.g. Newey,
1994; Ai and Chen, 2003), and standard calculations show that under appropriate regularity
conditions the influence function of such a STS-DR estimator is identical to that of STS
versions of either éREG or 6 rpw- In particular, all three estimators are asymptotically efficient.
This raises the question whether one should at all consider a “DR approach” to building
an STS estimator in the above missing data example — or any other model in which DR
estimators exist — given that it involves additional computational costs, requires a second
smoothing parameter, and leads to a procedure that may not dominate existing ones in
terms of first-order asymptotic variance. Put differently: is the robustness against parametric
misspecification that constructions like (1.1) enjoy of any use in a nonparametric setting
where nuisance functions are always consistently estimated?

In this paper, we show that there are indeed strong reasons to prefer an STS version of
§D r over estimators like 0 REG OT HAIPW. We first study a general missing data model, which
covers the example from above as a special case. Using local polynomial regression to estimate
the nuisance functions, a standard linear expansion of STS versions of 0p R QAREG and 0; PW
produces the same first-order terms, but the corresponding remainder is substantially smaller
for Op r than it is for the competing procedures. As a consequence, the otherwise commonly
required restriction that the estimation error of the nonparametric component is of the order
op(n~/*) is not necessary. STS-DR estimators can also have smaller first-order bias and
second-order variance than other first-order equivalent STS estimators, and their stochastic

behavior is more accurately described by the usual Gaussian approximation based on first-



order asymptotics. The latter feature implies for example that the coverage probability of
the usual 95% confidence intervals of the form “point estimated1.96 xstandard error” should
be closer to its nominal value in finite samples when it is based on the STS version of Opr
instead of one of the other estimators. Through simulations, we show that these theoretical
predictions translate well into actual finite sample gains of practically relevant magnitude.?

We also argue that having to choose a second smoothing parameter is not a substantial
practical downside of the STS-DR estimator. This is an important concern because many
STS estimators, including STS versions of HAREG and é\_[PW in models like the one described
above, can be highly sensitive with respect to the implementation details of the nonparametric
stage in finite samples (e.g. Robins and Ritov, 1997). This sensitivity arises because the
value of the smoothing parameters affects the magnitude of the remainder terms in a linear
expansion of these estimators; and while these terms are of “second order” in an asymptotic
sense, they can often be quite large for samples of the size typically encountered in empirical
practice. Since the construction (1.1) automatically removes the largest of these second order
terms, however, STS-DR estimators should be rather insensitive to variation in smoothing
parameters, which is confirmed by our simulations. We also show that in many cases the
bandwidth can be selected via cross-validation.

As a second contribution, we analyze which particular features of the semiparametric
missing data model are responsible for the gain in performance of the STS-DR estimator
relative to its competitors in order to clarify under which conditions we would expect to be
able to construct estimators with analogous properties in other semiparametric models in
which doubly robust procedures are known to exist. To answer this question, we study a

simple class of STS estimators in a general model about which we essentially only assume that

2While our theoretical results only cover kernel-based estimators for the nuisance functions, in our
simulations we also consider other nonparametric estimation procedures, such as orthogonal series regression
and smoothing splines. Our simulation results confirm that STS versions of the DR estimator have favorable
finite sample properties relative to many other STS estimation approaches, irrespective of the type of
nonparametric estimation procedure being used.



it gives rise to a doubly robust moment condition.®> Our main, somewhat surprising finding is
that the DR property alone is actually not able to generate STS estimators with the same
desirable properties that we obtained under the missing data model. Achieving analogous
results requires some additional structure which, roughly speaking, ensures that the residuals
from estimating the two nuisance functions are asymptotically uncorrelated. In the case of
the missing data model, for example, this property follows from the assumption that the data
are missing at random; and it follows through analogous arguments for a wide range of causal
inference models that are similar in structure. We also show that this property is satisfied in
three other semiparametric models in which DR estimators are known to exist: the partially
linear regression model, a model for nonparametric policy analysis, and weighted average

derivatives.

1.1. Related Literature. Two-step estimators that depend on nonparametrically estimated
functions, such as densities or conditional expectations, feature prominently in a wide range of
applications. General results for such estimators have been obtained for example by Goldstein
and Messer (1992), Newey (1994), Newey and McFadden (1994), Andrews (1994), Chen,
Linton, and Van Keilegom (2003), Chen and Shen (1998), Ai and Chen (2003), Ichimura and
Lee (2010), Escanciano, Jacho-Chévez, and Lewbel (2014, 2016), and Mammen, Rothe, and
Schienle (2016), among many others. Often these estimators are first-order asymptotically
equivalent to a sample average. In particular, an STS estimator 0 of some parameter 6°
based on an i.i.d. sample {Z;}?, from the distribution of some random vector Z is said to

be asymptotically linear with influence function ¢(-) if

-~

R,(0)=0—

3 0Z) o), B(O(Z) =0, B(Z)0(2)T) <.

3\+—‘

3Here a moment condition is said to be doubly robust if it depends on two unknown nuisance functions,
but still identifies the parameter of interest if either one of these functions is replaced by some arbitrary value.



Our focus in this paper is not on the form of ¢(-), but on the accuracy of the first-order approx-
imation that R,(f) &~ 0, which together with an application of the CLT to (1/v/n) X", ¢(Z:)
justifies the Gaussian approximation that § & N(0°, E(¢(Z:)o(Z:)T)/n).

Several papers have obtained results about the magnitude of Rn(é) for various estimators
under various conditions. In order to have a point of reference for the findings presented in
this paper it is useful to review some of them.* One class of results applies to settings where
0 depends on an (I + 1)-times differentiable regression or density function with d-dimensional
argument that is estimated by kernel-type methods using a bandwidth h.5 It is well-known
that under standard regularity conditions the nonparametric first-stage estimator has bias

of order h'*! and (pointwise) variance of order n='h=¢ in this case. Newey and McFadden

(1994) show that an STS estimator 0 in this class generally satisfies

~

R,(0) = Op(h'™) + Op(n~'h™9).

Asymptotic linearity of 6 thus requires a “small bias” and a “small variance” condition on the
first step nonparametric estimator. Hall and Marron (1987), Powell, Stock, and Stoker (1989)
and Powell and Stoker (1996) show that if 0 is a linear transformation of a “leave-one-out”

kernel weighted average® the “small variance” condition can be relaxed because

~

R, (0) = Op(A™) + Op(n~'h=%?)

4Note that if Rn(é\) vanishes faster for one estimator relative to another as the sample size increases, this
does not necessarily imply that the asymptotic linear approximation is more accurate for a particular finite
sample size for the one estimator relative to the other, as the constants associated with the rates are generally
different for different estimators.

°By kernel-type methods, we mean methods like the Rosenblatt-Parzen kernel density estimator, the
Nadaraya-Watson estimator, local linear or local polynomial regression, and local parametric models. Moreover,
we note that d refers to the number of continuously distributed covariates. Discrete covariates can be
accommodated via the usual frequency method without affecting the following results, or as in Racine and Li
(2004).

6Functions that can be estimated by kernel-weighted averages are those of the form £(a) = f(a)E(B|A = a),
where A, B are generic random variables and f is the density of of A. This class does thus not contain
conditional expectation functions, for example.



in this case. Techniques for explicitly removing the term of order Op(n=th~%) for estimators
that are nonlinear transformations of a nonparametrically estimated function are discussed in
the context of specific applications by Ichimura and Linton (2005) or Cattaneo, Crump, and
Jansson (2013). Newey, Hsieh, and Robins (2004) show that if a twicing kernel is used instead
of a regular one, or if 6 is based on an influence function in the corresponding semiparametric

model, then one can weaken the “small bias” condition for asymptotic linearity since

~

R,(0) = Op(R*"™)) + Op(n~'h™%)

in this case. Bickel and Ritov (2003) show that the same degree of accuracy can be achieved
with a generic higher-order kernel if ¢(-) is sufficiently smooth and the nonparametrically
estimated function is a density; see also Ichimura and Newey (2015).” Newey (1994) shows
that when using an orthogonal series estimator in the first stage, an analogous less stringent
“small bias” condition suffices for asymptotic linearity of a general class of STS estimators; a
result that is extended by Shen (1997), Chen and Shen (1998) and Ai and Chen (2003) to
more general classes of sieve estimators. In contrast, our findings imply that the magnitude
of both second order terms is reduced for kernel-based STS versions of DR estimators relative

to the baseline result of Newey and McFadden (1994). Specifically, we show that

-~

R,(0) = Op(h2(l+1)) + Op(n_lh_d/2) + Op(log(n)g/zn_?’/Qh_3d/2),

where the last term results from a crude bound on a cubic remainder term that could possibly

be improved at the cost of highly tedious calculations. We also show this improvement does

"This result can to some extent be combined with the ones mentioned above. For example, if g is a
linear transformation of a “leave-one-out” kernel weighted average and a twicing kernel is being used, then
R, (0) = Op(R*UD) + Op(n="h~%?); see Newey et al. (2004). Note that estimators based on higher-order
kernels are often reported to have poor finite sample properties not reflected by second-order asymptotic
expansions, and are therefore rarely used in practice. A twicing kernel is a particular type of higher-order
kernel. Newey et al. (2004) report good finite sample properties of estimators of weighted average derivatives
based on such kernels, but in our own simulations of a missing data setup the performance of estimators
based on twicing kernels is much less satisfactory.



not follow from the DR property alone.

STS versions of DR estimators have been used before in some papers. One example is
Robinson’s (1988) estimator of the parametric component of a partially linear model. In
a causal inference context, Cattaneo (2010) proposes an STS-DR estimator, but does not
prove that this approach has any formal advantages. The construction that leads to the DR
property is explicitly exploited in Belloni, Chernozhukov, and Hansen (2014), Farrell (2015)
and Belloni, Chernozhukov, Fernandez-Val, and Hansen (2016) for causal inference in a very
high-dimensional setting, where a LASSO-type estimator is used in the first stage. Of course,
our article also builds on the extensive literature on doubly robust estimation. See Robins
et al. (1994), Scharfstein et al. (1999), Robins and Rotnitzky (1995), Robins and Rotnitzky
(2001), Bang and Robins (2005), Kang and Schafer (2007), Tan (2010) or Vermeulen and

Vansteelandt (2015), among many others.

1.2. Outline of the Paper. The remainder of the paper is structured as follows. In the
next section, we study an STS analogue of a DR estimator in a missing data model, and
show that it has favorable theoretical and practical properties relative to other commonly
used STS estimators. In Section 3, we study estimation in a general class of models which
gives rise to a DR moment condition. We show that the DR property alone is not enough
to generate the type of results we obtained for the missing data model, and clarify which
additional structure is needed. We then argue that this structure is also present in three
other models in which DR estimators are known to exist: the partially linear model, a model
for policy analysis, and weighted average derivatives. Finally, Section 4 concludes. Regularity

conditions and proofs are collected in the Appendix.

2. ESTIMATION IN A MISSING DATA MODEL

In this section, we study a general semiparametric missing data model that contains the

simple example outlined in the introduction as a special case, but also covers for example



regression models with missing covariates and/or outcome variables (e.g. Scharfstein et al.,
1999; Chen, Hong, and Tarozzi, 2008), and causal inference models (e.g. Hahn, 1998; Hirano,
Imbens, and Ridder, 2003). We consider this setting because it is the one in which double

robust estimation features most prominently in the literature.

2.1. Model. Suppose that the underlying full data are a sample from the distribution of
(Y*,X) € R x R4 and let D be an indicator variable with D = 1 if Y* is observed and
D = 0 otherwise. The observed data thus consist of a sample {Z;}*, = {(V;, Xi, D:)}
from the distribution of Z = (Y, X, D), where Y = DY*. The parameter 6° is the unique
solution of the nonlinear moment condition E(m(Y™*, X, 6)) = 0, where m(-,#) is a known
function taking values in R%. Identification is achieved by assuming that Y* is missing at
random, that is E(D|Y™*, X) = E(D|X) with probability 1. Now define the regression function
£(x,0) = E(m(Y, X,0)|D =1, X = z) and the propensity score {3(z) = E(D|X = z), and
note that the propensity score is assumed to be bounded away from zero over the support of

X. Next, define

D(m(Y7 Xv 90) _ ff(X’ 90))
£(X)

o1 (Z) = E(Vam(Y", X, 0°)) " ( X, e°>> |

Sup =E(bmp(Z)oup(Z)7),

which are, respectively, the efficient influence function and the asymptotic variance bound for

estimating #° in this model (cf. Robins et al., 1994; Hahn, 1998).

2.2. Estimator and Main Result. We consider estimating the parameter 6° based on the
moment condition that the efficient influence function’s expectation is equal to zero. Since
the matrix E(Vym(Y™, X, 60°)) is assumed to be of full rank, this is equivalent to considering

the moment condition

E(Wnp(Z,0,£°)) = 0 if and only if § = 0°,



where Z = (Y, X")', £ = (&1, &3), and ¥np(Z,0,8) = (D(m(Y, X, 0) — £7(X,07)))/&(X) +
£9(X,0). Given an estimate é of £2, our estimator Opr of 6° is then given by the value of 6

that solves the equation

}/;7X170) EI(XMH))
&(X)

s

LY Uwn(Zu0.6) =
We refer to 1;p as a DR moment function, and to §DR as an STS-DR estimator in the
following, as analogous estimators of 6° based on parametric specifications for the two nuisance
functions are known to be doubly robust.

However, we deviate from the usual DR literature since we obtain our estimates 51 and 52
of £ and & by “leave-one-out” local polynomial regression (Fan, 1993; Ruppert and Wand,
1994).8 This class of kernel-based smoothers is well-known to have attractive bias properties
relative to other kernel-based methods, such as the Nadaraya-Watson estimator. For generic
vectors b = (b1,...,bg) and o = (.05 Q(1,0,..0) - - -  Q(0,..0.))> 1€t Pra(b) = Fo<isj<s s’

d b for

be a polynomial of order I. Here we use the notation that |a| = Y%, a; and a® = [I%, a;

generic d-dimensional vectors a, b, and that > (<, <; denotes the summation over all d-vectors
s of positive integers with 0 < |s| < [. Also let I be a univariate density function, put

Ky (b) = I1}—, K(b;/h)/h for any bandwidth h € R, and define

E(X,,0) = e angmin Y (m(Y5, X;,0) = Piy (X — X0))* Ko (X; = X)I{D; = 1},

R
&(X) = e argmin Y- (D; — Py, 5(X; — X)) Ko, (X — X)),
j#i

with e; the first unit vector (of appropriate dimension). Note that we are allowing for different
orders of the local polynomial and different bandwidths when estimating &7 and &9, but in
practice they might well be the same. For g = 1,2, we also define the sequences b,, = hlgfrl

and sy, = (log(n)/ (nhg))l/ 2 which under the conditions that we impose below correspond to

8We assume for simplicity that all d components of X are continuously distributed. Discrete covariates
can be accommodated via the usual frequency method, or as in Racine and Li (2004).

10



the uniform rate of convergence of the bias and the stochastic part, respectively, of our two
nonparametric estimators (cf. Masry, 1996). We then obtain the following result about the

asymptotic linearity of Opnr.

Theorem 1. Under suitable reqularity conditions (see Appendiz A.1), \/ﬁ(gDR —0°) =
nV2"  dnp(Z;) + op(1) KN N(0,%up) if ha, by are such that by,by, = o(n=Y?), b,, =

o(n=Y%) and s,, = o(n"Y6) for g =1,2.

2.3. Discussion. Theorem 1 differs from other asymptotic linearity results for STS estimators
in that it only imposes relatively weak conditions on the accuracy of the nonparametric
first stage estimates. The bandwidth restrictions allow each of the smoothing biases from
estimating £9 and £5 to be of the order o(n~'/%) as long as their product is of the order o(n=1/2),
and only require the respective stochastic parts to be of the order 0p(n_1/ 6). Asymptotic
linearity of a STS estimator otherwise typically requires an op(n~'/*) rate of convergence for
the nonparametric component (e.g. Newey, 1994).

Weaker conditions are possible here because the difference between 8 and its asymptoti-
cally linear representation is particularly small. To see this, consider the case that hy = ho = h
and [; = [y = [ to simplify the exposition. By following the proof of Theorem 1 we find that

Opr —0° — i S ban(Z) = Op(R2D) 1+ Op(n~ 592 + Op(log(n)*2n~ 321 -34/2).

i=1
The right-hand side of this equation is minimized if A is chosen such from the permissible

range of bandwidths that n'/?¢h — oo, in which case
~ 17
Opr — 07— — S émp(Z) = Op(R*)) + Op(n~th™%2). (2.1)
i=1

The magnitudes of the two terms on the right-hand side of the previous equation correspond to
those of the squared bias and h%/? times the (pointwise) variance of the Eg, respectively. Their
sum can be as small as Op(n~4+D/AEHD+)) 1f | = d = 1, for example, the right-hand-side

of (2.1) is minimized by choosing h o< n=?/?, and is of the order Op(n~%?) in this case. If

11



d < 3, the range of bandwidths that satisfy the conditions of Theorem 1 includes those of
the form h, oc n=V/@UHD+D) which minimize the Integrated Mean Squared Error (IMSE)
for estimating &7 and &9, respectively. This is convenient, as there are well-known methods
such as cross-validation to construct such bandwidths. However, such bandwidths do not
necessarily have any optimality properties for estimating 6°.

It is interesting to compare these properties to that of the popular Inverse Probability
Weighting (IPW) estimator 01 pw (e.g. Hirano et al., 2003; Firpo, 2007), which is defined as

the value of # that solves the equation

§= D% Xi6)

1
nia §2(X5)

Following Ichimura and Linton (2005) and Bravo and Jacho-Chéavez (2010), who study a

slightly simpler version of this estimator, we would need hy to be such that by, = o(n='/?)
and sy, = o(n"4) to ensure that /n(0;pw — 0°) = n 27", dup(Z) + op(1). These

conditions are called for because
N 1
Orpw —60° — — > éomun(Z;) = Op(B™) + Op(n'h™%). (2.2)
i=1

The difference between 6;py and its asymptotically linear representation is thus at best
of the order Op(n~(+1/U+1+d)) " For example, if | = d = 1 the difference is at least of
the order Op(n~2/3), which is bigger than what we obtained for the STS-DR estimator.
As a consequence, we can expect standard Gaussian approximations based on first-order

asymptotic theory to be more accurate in finite samples for ) pr than for 0 PW -

Remark 1. In nonparametric regression problems with a binary dependent variable, one
can use local Probit or Logit models, as in Fan, Heckman, and Wand (1995), instead of
standard local polynomial regression in order to ensure that the final estimator is constrained
to take values in the unit interval. We conjecture that the use of such alternative estimation

techniques for the propensity score (or the regression function, in case of a binary outcome)

12



would not change the substantive conclusions of Theorem 1; subject of course to a suitable
adaptation of regularity conditions. This conjecture is based on results by Kong, Linton,
and Xia (2010), which show that a large class of local M-estimators possesses a stochastic
expansion that is analogous in structure to the one of the local polynomial regression estimator

we use in our proofs.

Remark 2. If one were to use a “leave-in” version of the local polynomial regression estimator
to construct fpg, this would give rise to an additional bias term of order O(n~'h~%) in the
right-hand-side of expansion (2.1). This bias would not vanish faster than n~'/2 under the
conditions of Theorem 1. Using “leave-one-out” estimators to avoid this type of bias is a

standard technique in the literature on STS estimation; see for example Hall and Marron

(1987), Powell et al. (1989) or Powell and Stoker (1996).

2.4. Simulation Evidence. In this subsection, we study the finite sample properties of the
STS-DR estimator through a Monte Carlo experiment, and compare them to those of other
STS estimators of the same parameter. Our aim is to illustrate that the theoretical results
obtained above provide a realistic picture of the behavior of the estimator in practice. The
data generating process in our simulations is the special case of our general missing data
model described in the introduction. The covariate X is scalar and uniformly distributed
on the interval [0,1].° The outcome variable Y* is normally distributed given X with mean
&(X) = 1/(1 + 16 - X?) and variance .5. The indicator D for a complete observation

is a Bernoulli random variable with mean £5(X) = 1 — .8 - £7(X). With these choices

9While real empirical applications typically involve several covariates, we confine ourselves to the case of
single covariate for our simulations. This is because the finite-sample performance of the estimators that we
consider does not so much depend on the number of covariates, but on the overall complexity of the functions
that are being estimated. We refer to Frolich, Huber, and Wiesenfarth (2015) and Naimi and Kennedy (2017)
for extensive simulation studies of STS-DR estimators in program evaluation settings with multiple covariates.
These studies find properties of STS-DR estimators that are qualitatively very similar to the simulation
results in this paper. In Appendix C, we also report simulation results for several modified versions of our
DGP in which the density of the covariate is not bounded away from zero. Again, the results are qualitatively
very similar to the ones reported here.

13



0° = E(Y*) ~ .331 and X)p ~ .188. We consider the sample size n = 500, and set the
number of replications to 5,000.

While our theoretical results above only cover kernel-based estimation of nuisance functions,
for our simulations we also consider other types of nonparametric first stage estimators. We
also use a variety of different smoothing parameters. Specifically, we consider estimators of

the form

with s € {K,0S,SP}. Here éDR_K is the kernel based estimator described above, which
uses a “leave-one-out” local linear estimator with bandwidth h; € {.05,.08,...,.5} for the
regression function £7; and a “leave-one-out” local linear Logit estimator with bandwidth
hy € {.05,.08,...,.5} for the propensity score £5. In both instances a Gaussian kernel is
used. By é\DR—OS we denote an orthogonal series based STS-DR estimator, which uses a
linear series regression with a standard polynomial basis and hy € {1,2,...,11} terms to
estimate the regression function; and a series Logit estimator using the same set of basis
functions and hy € {1,2,...,11} terms to estimate the propensity score. Finally, we consider
a spline based STS-DR estimator 6p Rr—sp, which uses cubic smoothing splines with smoothing
parameters hy, hy € {.5,.55,...,1.25} for the regression function and the propensity score,
respectively.!® For all combinations of nonparametric estimators and smoothing parameters,

we also compute nominal (1 — «) confidence intervals of the usual form

Clllj;za_s = |:§DR—5 + 24 (is/n) 1/2} )

10To give a point of reference, note that the smoothing parameters for estimating the regression function
and the propensity score, respectively, that would be obtained by minimizing a least-squares cross-validation
criterion are roughly equal for these two functions, and take a numerical value of about .1 for kernel estimation,
3 for series estimation, and 1 for splines.

14



where z,, is the 1 — a/2 quantile of the standard normal distribution and

(DY - &(X) | - =\
% (M v~

is an estimate of the asymptotic variance ¥ y/p, for s € {K,0S, SP}. We consider the usual

5, =

confidence level 1 — o = .95 for our simulations.
[TABLE 1 ABOUT HERE]

In Table 1 we report the Mean Squared Error (MSE), absolute bias (BIAS) and variance
(VAR) for the various implementations of the STS-DR estimator for a subset of smoothing
parameters that we considered. We scale these quantities by appropriate transformations
of the sample size to make them more easily comparable to the predictions from first-order
asymptotic theory. Our results show that uniformly over all implementations the STS-DR
estimators are essentially unbiased, and their variance is very close to the efficiency bound
Yup =~ .188. Correspondingly, the MSEs are also very similar to their theoretically predicted
value ¥ y,p. We also report the empirical coverage probability of the corresponding confidence
intervals, which are all very close to the nominal level 95%. We interpret these results as
evidence that first order asymptotic theory provides a reliable approximation to the finite
sample distribution of the STS-DR estimators, and that this approximation is robust with
respect to the construction of the nonparametric first stage (both the type of estimator and
the choice of smoothing parameters).

To put these results into perspective, we also study the performance of a number of
alternative estimators that are not STS analogues of a DR procedure. To begin by considering
inverse probability weighting (IPW) and regression (REG) type estimators using the same

range of nonparametric first step procedures and smoothing parameters as for STS-DR
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estimators above. That is, we consider the estimators

~ 1& DY, ~ 18~
Orpw_s = — L and  Oppg—s = — 1(Xz),
n ; 2(X5) n ;

with s € {K,0S, SP}, and the corresponding nominal (1 — a) confidence intervals CI;pg
and Clgz5_,. Note that these two confidence intervals by construction have the same length
as Ol , for each s and every value of the smoothing parameters, and only differ in the
point at which they are centered.!!

In addition to these estimators, we also consider two modifications of the kernel-based
procedures. First, we consider estimators §]PW_TK and éREG_TK that are obtained in the
same way as the ordinary kernel-based IPW and REG estimator, respectively, except for
using a Gaussian twicing kernel instead of a regular one (Newey et al., 2004). Second, we
consider bootstrap bias corrected versions éjpw_ Bs and éREG_ Bs of the two kernel-based
estimators, following recommendations in Cattaneo and Jansson (2014).' We also consider
bootstrap-based confidence intervals for 6° calculated using the usual percentile method. Note
that the calculation of these confidence intervals does not involve estimating the asymptotic

variance, and thus does not depend on a second smoothing parameter.
[TABLES 2 AND 3 ABOUT HERE]

Our simulation results are given in Table 2 for IPW estimators, and Table 3 for REG
estimators. They show that the properties of these estimators can differ substantially from

the predictions of first-order asymptotic theory. In particular, their finite-sample distribution

"From the practitioner’s perspective, using STS-DR is not more costly computationally than, say, using
the STS-REG or STS-IPW estimator since conducting inference based on an estimate of the asymptotic
variance requires estimates of the regression function and the propensity score for all three procedures.

128pecifically, the estimators 51 Pw—Bs and é\Rch Bs are obtained in three steps. First one computes
an ordinary kernel-based IPW or REG estimator, but without using a “leave-one-out” procedure in the
nonparametric stage. Second, a bootstrap distribution is created by re-computing the estimator on i.i.d.
draws of size n from the empirical distribution function of the data, and centering at the original estimate.
Third, the mean of the bootstrap distribution is taken as an estimate of the bias, and subtracted from the
original estimator.
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varies a lot over the various nonparametric first stage procedures we consider, and thus
inference is generally less robust relative to the STS-DR estimators. For example, the kernel-
based IPW estimator 0. 1pw_k is strongly biased for most values of the bandwidth. Its finite
sample variance is well above the theoretical asymptotic variance for all bandwidth values,
exceeding it by almost 70% for hy = .05. In consequence, the coverage properties of the
corresponding confidence intervals tend to be poor. We also illustrate this point in Figure 5
by plotting the MSE, bias and variance of 01 pw—xk against the results for the kernel-based
DR estimator Opp_r. One can see, for example, that the finite-sample MSE of Opr_r viewed
as a function of the bandwidths is close to flat and near the theoretically predicted value of
.188. On the other hand, the MSE of glpw, x viewed as a function of the bandwidth has a
pronounced “U-shape” and is always well above the theoretically predicted value.

Turning to the remaining estimators, we find that using a twicing kernel does not lead
to a substantial improvement. Our results show some minor bias reduction but also a large
increase in variance relative to the kernel-based IPW.!3 Bootstrap bias correction is effective
at reducing the bias for small values of the smoothing parameter, but tends to increase
it for larger bandwidth values. It also tends to increase the finite sample variance of the
estimator, but bootstrap-based confidence intervals have good coverage properties for small
and moderate values of the smoothing parameter. The orthogonal series estimator does very
well in our study in terms of bias, which is small except for the implementation using a
single series term. Still, its variance exceeds the predicted one by roughly 20%. Finally, the
spline based estimator’s bias also depends heavily on the smoothing parameter, whereas its
variance properties are similar to those of the series-based one. Table 3 shows that REG-type

estimators generally perform somewhat better than IPW estimators in this setting. Variances

13The the REG and IPW estimators based on twicing kernels also produce a number of substantial outliers,
which we removed for the calculations of our summary statistics. Specifically, we discarded all realizations
which differed from the median over all simulations runs by more than four times the interquartile range (we
proceeded like this with all estimators to keep the results comparable).
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Figure 1: Simulation results: MSE, absolute bias and variance of 51 pw—k for various values of hqy
(bold solid line), compared to results for Opr_x with bandwidth h; equal to .05 (short-dashed line),
.08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed dotted line), and .5
(thin solid line).

are relatively close to the efficiency bound over all nonparametric first stage procedures that
we consider. Still, the bias of the kernel, twicing kernel, and bootstrap-corrected kernel

estimators all vary strongly with the smoothing parameter.

3. ESTIMATION IN A GENERAL SEMIPARAMETRIC MODEL
The results derived in the previous section prompt the question whether they are specific to
the model that we considered there, or whether we should generally expect STS versions of
DR estimators to have analogous favorable properties. To answer this question, we study a

general class of STS-DR estimators that are constructed as solutions to a sample analogue
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of a DR moment condition; a concept that we formally define below. This setup covers the
model from the previous section, but also several others; see Section 3.4 below. We show
that this construction alone is not enough to obtain an asymptotic linearity result like the
one in the previous section, but that instead some additional structure is needed. However,
we argue that this additional structure is present in many models in which DR estimators

are known to exist.

3.1. Setup. Consider the problem of estimating a parameter 6°, contained in the interior of
some compact parameter space © C R% using an i.i.d. sample {Z;}? , from the distribution
of some random vector Z € R%. We suppose that one way (of potentially many different
ones) to characterize 6° is through a moment condition containing an infinite dimensional
nuisance parameter. That is, we assume that the model which determines the distribution
of Z is such that there exists a known function v that takes values in R% and satisfies the

following relationship:
U(0,6°) =E((Z,0,£°) =0 if and only if § = 6°. (3.1)

Here £° is an unknown (but identified) nuisance function that could in principle also depend
on 6. The functional ¥ is also assumed to be doubly robust for estimating 6°, in the sense

that £° can be partitioned as £° = (£, £9) € 21 x =5 such that
U(,£0.6,) = 0 and U(6,&,,€9) = 0 if and only if 6 = 6 (3.2)

for all functions & € =; and & € Z;. The function 7 is called a doubly robust moment

function in this case. We do not consider the issue of whether such a function exists in any

given semiparametric model.'

14See Robins and Rotnitzky (2001) for some results in this regard. One of their results is that if a DR
moment function exists, it has to be an element of the space of influence functions of the corresponding
semiparametric model. Since every influence function for estimating a dg-dimensional parameter takes values
in R% by construction, we can focus on settings where 1 takes values in R% without loss of generality.
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To simplify the exposition, we focus on two special cases; one where both £} and &5
are conditional expectations, and one where & is the density function of a continuously

distributed random vector and &5 is a conditional expectation:

Case 1: &) (z,) = E(Y,| X, = z,) for g € {1,2};

Case 2: gf(,fl) = &ElP(Xl S .Tl) and g;(Ig) = E(Y2|Xg = Ig).

Here Y, € R, X, € R% and (Y1, Y5, X1, X») is a random subvector of Z that might have
duplicate elements. We also assume for simplicity that £ does not depend on #, and that the
moment function is such that ¢(Z, 6, &, &) depends on , through &,(U,) only, where U, is a
subvector of Z. With U denoting the union of distinct elements of U; and Us,, we write £(U) =
(&(U1),&(Us)) and, with some abuse of notation, ¥(Z,0,&;,&) = ¥(Z,0,£(Ur),&(Us)) and
(0,81, &) = E(W(Z,6,6(U1),&(U2))).

3.2. Estimator and Main Result. Our interest is in the properties of STS estimators based
on a sample analogue of a DR moment condition, which we refer to as STS-DR estimators.

Such an estimator Opp of 8° can be constructed as the value of § which solves the equation

> (Zi,0,€(U3) =0, (3:3)

where £ = (51,52) is a suitable nonparametric estimate of £ = (£9,£9). Under Case 1, we
estimate §; by “leave-one-out” local polynomial regression of order [, using bandwidth h,,
for g = 1,2. Using notation analogous to that introduced in Section 2.2, we put

~ ) 2

gg(Ugi) = 6]— argmlnz (Y:qj - Plg,a(ng - Ugi)) th (ng - Ugi)a g=12

g

For Case 2, we use a standard “leave-one-out” kernel density estimator to estimate the
density £7, using a kernel function of order /; + 1 for the purpose of bias control. That is,

with " a symmetric function on R whose exact properties are stated in the Appendix, and
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Kj(b) = 19— K*(bj/h)/h, we define

~

1
G(U) = — 3 K, (Uy; = Xa).
J#i

Our estimate of £ is the same as for Case 1. For g = 1,2, we also define the sequences
bgn = hls™ and sz, = (log(n)/(nhd))"/?, which under the conditions that we impose below
correspond to the (uniform) order of the bias and the stochastic part, respectively, of our two
nonparametric estimators in both Case 1 and 2.

Due to the DR property of ¢ we expect Opr to be adaptive, in the sense that its own
influence function and asymptotic variance are identical to that of an infeasible estimator
which uses the true functions (£7,£9) instead of the corresponding nonparametric estimates.

That is, we expect the influence function and asymptotic variance of Opr to be

¢c(Z) = H'(Z,0°,€7,&5) and  Sg =E(¢c(Z)oc(Z)"),

respectively, where H = E(9p(Z,6°,£°)). The following theorem gives conditions for the

asymptotic linearity of p R

Theorem 2. Under suitable regqularity conditions (see Appendiz A.2), \/n(Opr — 0°) =
N2 ba(Zi) + op(1) 5 N(0,%¢) if in addition either of the following conditions is

satisfied:
(a) hi,hy are such that by, = o(n=Y*) and s,, = o(n='/*) for g =1,2.
(b) we are in Case 1, the distribution of Z is such that
E((Y1 = &(X1)) - (Y2 = (X)) X1, X») =0, (3.4)
and hy, hy are such that bi,by, = o(n™'/?), bgn = o(n=1%) and Sgn = o(n=18) for g = 1,2.

(c) we are in Case 2, the distribution of Z is such that X; = r(Xs) for some fized function r,

and hy, hy are such that by,ba, = 0o(n=Y?), by, = o(n=%) and s,, = o(n=V°) for g =1, 2.
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3.3. Discussion. Theorem 2(a) is the main result of this section. It shows that simply being
based on a DR moment condition is not enough for an STS estimator to be asymptotically
linear under the same kind of weak restrictions that we imposed for the missing data model.
Consider the case that hy = he = h and [; = [, = [ to simplify the exposition. From the

proof of Theorem 2(a) we see that under its conditions we only get that
~ 1™
Opr —0° — = ¢6(Zi) = Op(K*D) + Op(n~th™). (3.5)
n;3

Following Newey and McFadden (1994), we would expect such a result for any adaptive kernel-
based STS estimator. We remark that STS-DR still performs somewhat better than adaptive
STS estimators, but in a way that is not apparent from (3.5). To explain this, consider the
functionals & +— W(0°,&,£9) and & — W(6°2,£7,&,). If ¢ was only an influence function
without the DR property, these functionals would each have zero first order derivatives. With
the DR property, these functionals are actually constant and equal to zero. An inspection of
the proof of Theorem 2 shows that this property removes some but not all terms of order
Op(n~th~%) from an expansion of the estimator pg (relative to that of an STS estimator
based on a moment condition with two nuisance functions without the DR property).

So which features of a semiparametric model, in addition to the presence of a DR moment
condition, deliver properties of STS-DR estimators of the kind we found in Section 27
This question in answered by Theorem 2(b)—(c). Under the conditions stated there, Opp
has theoretical properties analogous to those established in Theorem 1. In particular, the

nonparametric component is not required to converge with a rate of o p(n_l/ 1), and
~ 17
Opr —0° — = 66(Zi) = Op(K*D) + Op(n ' h™2) + Op(log(n)*/*n =22 L=3%2). (3.6)
ns

This improvement over part (a) comes from the fact that for an STS-DR estimator, roughly
speaking, the remaining term of order Op(n~'h=%) in equation (3.5) is driven by the asymp-

totic covariance between the residuals of 51 and 52. For our Case 1, the orthogonality
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condition (3.4) essentially ensures that 51 — & and 52 — &9 are asymptotically uncorrelated,
and the Op(n~th~%) term drops out. For our Case 2, the estimation error 51 — &7 is essentially
a weighted sum of functions of the Xy;, whereas 52 — &9 is essentially a weighted sum of the
“true” residuals Ys; — £9(X5;). Since the latter are uncorrelated with any function of Xy;, the
Op(n~th™%) term vanishes.

While the conditions of Theorem 2(b)—(c) might at first seem obscure and rather restrictive,
they are indeed satisfied by a wide range of models. For the missing data model in Section
2, which falls under Case 1, the orthogonality property required by Theorem 2(b) follows
from the fact that the data are missing at random. Theorem 2(b) also covers various models
for causal inference that are similar in structure, in the sense that identification is achieved
through some particular conditional independence restriction. Our results thus extend, for
example, to the DR estimators of average treatment effects under unconfoundedness reviewed
in Bang and Robins (2005), but also to the DR estimators of local average treatment effects
using instrumental variables proposed by Tan (2006) and Ogburn, Rotnitzky, and Robins
(2015). Moreover, as pointed out in the following subsection, Theorem 2(b)—(c) also cover

the partially linear model, a policy effects model, and weighted average derivatives.

Remark 3. In a model with a DR moment condition for which the conditions of Theorem 2(b)—
(c) are not naturally satisfied, one can always construct a modified nonparametric first-stage
estimator such that El — &7 and 52 — &9 are asymptotically uncorrelated by splitting the data

into two parts at random, and then calculate 51 and 52 from different subsamples.

3.4. Application to Further Specific Models. We now briefly review three additional
specific examples that are widely used in applied work, and that are covered by the theory
presented in this section. In particular, in all cases a STS-DR estimator based on standard
kernel-based estimators of the respective nuisance functions would be asymptotically linear
under conditions on the order of the bias and the stochastic parts analogous to those in

Theorem 1 and Theorem 2(b)—(c).
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Partial Linear Model. Suppose that Z = (Y, X, W), where Y is a scalar outcome variable
and both X and W are vectors of explanatory variables. Then a partially linear regression
model (e.g. Robinson, 1988) assumes that Y = \°(X) + WT#° + ¢, where \° is a smooth
function, #° is a vector of parameters, and ¢ is an unobserved random variable that satisfies

E(e| X, W) = 0. Now let £(z,0) = E(Y — WTH|X = z) and £(z) = E(W|X = z). Then
Vpa(Z,0,6) = (Y = W0 — &(X,0)(W — &(X))

is a DR moment function for estimating 6°. This model is a minor variation of our Case 1,
and it follows from the model structure and the assumption that E(e|X, W) = 0 that the
orthogonality condition (3.4) holds. The statement of Theorem 2(b) then applies analogously
to the STS-DR estimator under appropriately adapted regularity conditions. See Linton
(1995) for a similar result using different arguments. Note that the STS-DR estimator is
easily seen to be identical (up to trimming terms) to the estimator proposed by Robinson

(1988).

Policy Effects. Suppose that Z = (Y, X)), where Y is a scalar outcome variable and X is a
vector of explanatory variables. Stock (1989) studies the problem of predicting the effect of a
change in the distribution of X to that of 7(X), where 7 is some known policy function, on the
expectation of the outcome variable. Under certain assumptions, this parameter of interest is
given by 0° = E(E(Y|X = 2)|,=r(x)). Now let & = (£7,,£7,), where &7, (2) = E(Y|X = x),
&% (x) = E(Y|X =7(x)), and &9 = (£9,,£9,), where &5, (x) and £5,(x) denote the densities of

X and 7(X), respectively, at z. Then

€22

£21(X) Y

VYpe(Z,0,8) = &12(X) + (Y = &u(X))

is a DR moment function for estimating #°. This setup is a minor variation of our Case
2, the difference being that &7 and &5 each have more than one component. This however,

has no effect on the structure of the proof of Theorem 2(c), and thus its statement applies
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analogously to the STS-DR estimator here under appropriately adapted regularity conditions.

Weighted Average Derivatives. Suppose that Z = (Y, X), where Y is a scalar dependent
variable and X is a vector of continuously distributed explanatory variables with density
function £3. Then the weighted average derivative (WAD) of the regression function E(Y|X =
x) is defined as 0° = E(w(X)V,E(Y|X = z)|,—x), where w is a known scalar weight function.
WADs are important for estimating the coefficients in linear single-index models, and as a
summary measure of nonparametrically estimated regression functions more generally (e.g.
Powell et al., 1989; Newey and Stoker, 1993; Cattaneo et al., 2013). Let £, (x) = E(Y|X = z),
denote the density of X by £9,(x), and denote the vectors of partial derivatives of those two

functions by &5, (x) = 0,£7,(z) and &5, (x) = 0,£9, (), respectively. Then

Ywan(Z,0, (X)) = w(X)g(X) - (¥ — €1 (X)) (Vmw(X) ’ “’“@f%) -’

is a DR moment function for estimating 6°. This setup is a minor variation of our Case 2.
Both £ and &9 again have more than one component, and in addition one of the components
is a derivative of a density or a conditional expectation, respectively. Again, it is easy to see
that this has no effect on the structure of the proof of Theorem 2(c), and thus its statement
applies analogously to the STS-DR estimator here under appropriately adapted regularity

conditions.

4. CONCLUSION

In this paper, we have explored the possibility of constructing semiparametric two-step
estimators as analogues of standard doubly robust estimators. We have shown that such
STS-DR estimators have favorable theoretical and practical properties relative to other
commonly used STS estimators. We have also shown that the DR property alone is unable
to generate estimators with similarly favorable properties. Instead, it needs to be combined

with an orthogonality condition on the estimation residuals from the nonparametric first
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stage, which we show to be satisfied in a wide range of models.

APPENDIX
A. REGULARITY CONDITIONS FOR MAIN RESULTS

In this Appendix, we collect the regularity conditions necessary to establish the statements

of Theorems 1 and 2.

A.1. Regularity Conditions for Theorem 1. The statement of the Theorem holds under

the following regularity conditions.

Assumption K1. (i) The kernel K is twice continuously differentiable; (ii) [K(u)du = 1;
(iii) [ ul(u)du = 0; (iv) [ |u*K(u)|du < oo; and (v) K(u) = 0 for u not contained in some

compact set, say [—1, 1].

Assumption MD1. (i) E(m(Y*, X,60°)) = 0 and E(m(Y*, X,0)) # 0 for all § € © \ {6°},
with © C R% a compact set and 6° € int(0), (ii) there exists a non-negative function b such
that |m(Y™*, X, 0)| < b(Y*, X) with probability 1 for all § € ©, and E(b(Y*, X)) < oo, (iii)
m(Y*, X, ) is continuous on © and continuously differentiable in an open neighborhood of

0°, (iv) E(|lm(Y™, X, 6°)[|*) < oo and, (v) supgee E(|Vom(Y™, X, 0)])) < .

Assumption MD2. (i) X is continuously distributed both unconditionally and conditional
on D = 1, with compact and convex support S(X) and S(X|D = 1), respectively; (ii)
the corresponding density functions are bounded, have bounded first order derivatives, and
are bounded away from zero, uniformly over S(X) and S(X|D = 1), respectively; (iii)
€3(x) is (la 4+ 1)-times continuously differentiable; (iv) &{(x, ) is (I; + 1)-times continuously
differentiable in x for all § € ©, and sup,cg(x|p=1) E(|m(Y; X, 60°)[||D =1, X = x) < oo for

some constant ¢ > 6.

Assumption K1 describes a standard kernel function. The support restrictions on K could

be weakened to allow for kernels with unbounded support at the expense of a more involved
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notation. Assumption MD1 is a set of regularity conditions that ensures that a standard
Method-of-Moments estimator of §° would be y/n-consistent and asymptotically normal in
the absence of missing data. Assumption MD2 collects a number of smoothness and regularity

conditions of the form commonly imposed in the context of nonparametric regression.

A.2. Regularity Conditions for Theorem 2. The statement of the Theorem holds under
Case 1 if Assumptions K1 and G1-G2 are satisfied, and under Case 2 if Assumptions K1-K2,
G1 and G3 are satisfied. Here Assumption K1 is as stated in the previous subsection, and all

other regularity conditions are as follows.

Assumption K 2. (i) £* is twice continuously differentiable; (ii) [K*(u)du = 1; (iii)
JubK*(u)du =0 for k =1,...,lo + 1; (iv) [ |u2K*(u)|du < oo; and (v) K*(u) = 0 for u not

contained in some compact set, say [—1, 1].

Assumption G1. (i) The DR moment function ¥(z,0,&(u)) is three times continuously
differentiable with respect to {(u), with derivatives that are uniformly bounded; (ii) there
exists @ > 0 and an open neighborhood N (6°) of 6° such that supgepgo) | Vo) (Z,0,£(U)) —
Vo (Z,0,€2(U))| < b(2)||€ — €| (iii)) the matrix H = E(Vg(Z,6°,£°(U)) has full rank.

Assumption G2. The following holds for g € {1,2}: (i) U, is continuously distributed with
compact support S(Uy); (ii) X, is continuously distributed with support S(X,) 2 S(Uy);
(iii) the corresponding density functions are bounded, have bounded first order derivatives,
and are bounded away from zero uniformly over S(Uy); (iv) the function £ is (I, + 1) times

continuously differentiable; (v) sup,esq,) E(|Y;]| Xy = u) < oo for some constant ¢ > 6.

Assumption G3. The statements of Assumption G2 hold for g = 2. In addition: (i) X; and
U, are continuously distributed with support S(X;) = R% and S(U;) 2 S(X}), respectively;
(ii) the density function £ of X; has continuous and uniformly bounded derivatives up to

order (I; +1).
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Assumption K2 describes a standard higher-order kernel function, and Assumption G1
is analogous to Assumption MD1 above. Assumptions G2-G3 collect various smoothness
conditions that are standard in the literature on kernel-based nonparametric regression and
density estimation. Note that the restriction that X; has unbounded support in Assump-
tion G3 can easily be weakened if instead a boundary kernel is used in the construction of
the estimator of 2. This would ensure a bias of uniform order O(h{'™) without affecting the

basic structure of the stochastic part, which is all we need for the proof of the theorem.

B. PROOFS OF MAIN RESULTS

In this Appendix, we give the proofs of Theorems 1 and 2. We begin by stating two auxiliary
results about the rate of convergence of U-Statistics and a certain expansion of the local

polynomial regression estimator that are used repeatedly in this Appendix.

B.1. Rates of Convergence of U-Statistics. For a real-valued function ¢, (z1,..., )

and an i.i.d. sample {X;}" | of size n > k, the term

(n—k)!
Unzil Z SOH(XSU"WX%)
n: s€8(n,k)
is called a kth order U-statistic with kernel function ¢,,, where the summation is over the
set S(n, k) of all n!/(n — k)! permutations (si,...,s,) of size k of the elements of the set

{1,2,...,n}. Without loss of generality, the kernel function ¢, can be assumed to be

symmetric in its £ arguments. In this case, the U-statistic has the equivalent representation

1
n
Un: (k‘) Z Son(Xsla--'aXsk)a

seC(n,k)
where the summation is over the set C(n, k) of all (Z) combinations (sy,...,s;) of k of the
elements of the set {1,2,...,n} such that s; < ... < s;. For a symmetric kernel function ¢,
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and 1 < ¢ < k, we also define the quantities

One(Tr, .. xe) = E(on(x1, ..o 20, Xeya, ..., Xi)) and pp . = Var(p, o( Xy, . .. ,XC))l/Q.

If pn. = 0 for all ¢ < ¢*, we say that the kernel function ¢,, is ¢*th order degenerate. With this
notation, we give the following result about the rate of convergence of a kth order U-statistic

with a kernel function that potentially depends on the sample size n.

Lemma 1. Suppose that U, is a kth order U-statistic with symmetric and possibly sample

size dependent kernel function ¢, and that p, < co. Then

k
pn,c
U, —E(U,) = Op (Z nc/2> .

c=1

In particular, if the kernel @, is c*th order degenerate, then

o
U, =0 e,
P( Z1”C/Q>

c=c*+
Proof. The result follows from explicitly calculating the variance of U, (see e.g. Van der

Vaart, 1998), and an application of Chebyscheft’s inequality. O

B.2. Stochastic Expansion of the Local Polynomial Estimator. Our proofs use a
particular stochastic expansion of the local polynomial regression estimators {Ag. This is a
minor variation of results given in e.g. Masry (1996) or Kong et al. (2010). We require the
following notation. For any s € {0,1,...,l,} let ny, = (ﬁjﬁ;l) be the number of distinct
dg-tuples u with |u| = s. Arrange these dy-tuples as a sequence in a lexicographical order
with the highest priority given to the last position, so that (0,...,0,s) is the first element

in the sequence and (s,0,...,0) the last element. Let 75 denote this 1-to-1 mapping, i.e.

75(1) = (0,...,0,9), ..., 7(ns) = (5,0,...,0). For each s € {0,1,...,[,} we also define a
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ns x 1 vector w,; ,(u) with its kth element given by ((X,; — u)/h,)™®). Finally, we put

w;(u) = (1 Wgj, I(U)Ta e ng,lg(u)T)i
Myni( ng] u)wg;(u Tth (Xgj — u),
T i

Ngn(u) = E(wg;(u)wg; (U)Tth (Xgj —w)),

779n7j(u) = Wg; (U)ng(u)Tth (ng —u) — E(ngm)ng(u)Tth (ng —u)).

To better understand this notation, note that for the simple case that [, = 0, i.e. when
Eg is the Nadaraya-Watson estimator, we have that wy;(u) = 1, that the term M, ;(u) =
nt Y4 K, (Xg; — u) is the leave-one-out version of the usual Rosenblatt-Parzen density
estimator, that Ng,(u) = E(Kp,(Xy — u)) is its expectation, and that ng, ;(u) = K, (Xg; —
u) — E(Kp,(Xy; —u)) is a mean zero stochastic term with variance of the order O(h,%).

Also note that with this notation we can write the estimator Eg(Ugi) as

§g(Ugi) n—1 Ze;r Uyi) lng(Ugi)th (Xgj — Ugi) Yys,
JFi
where e; denotes the (1 + lyd,)-vector whose first component is equal to one and whose

remaining components are equal to zero. We also introduce the following quantities:

By (Ugi) = €1 Ny (Ugi)*lE(ng(Ugi)th(ng = Ugi) (§1(Xgj) = &1(Ugi))|Ugs)

Z elT Uyi) ng(Ugi>th (Xgj — Ugi)eg

" j#i
Rgn Zel ( annl gi ) (Ugi)dng(Ugi)th(ng — Uyi)eg;
J#’L l#i

We refer to these three terms as the bias, and the first- and second-order stochastic terms,
respectively. Here ¢,; = Y,; —&7(X;) is the nonparametric regression residual, which satisfies

E(e4i]X,4;) = 0 by construction. To get an intuition for the behavior of the two stochastic
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terms, it is again instructive to consider simple case that [, = 0, for which

Sgn(Ugi) = (U Z K, (Xg; — Ugi)eg; and
gn(Ugi) 57
1 1
R n(U z) = T 77 <5 (th(X ) f n z th 1)5
g g fgn(UgZ) (n ; g ; gi)<gj

with E(Kp, (Xg; — ) = fyn(u). With this notation, we obtain the following result.

Lemma 2. Under Assumptions K1 and G1-G2 the following statements hold for g € {1,2}

if hg — 0 and log(n)/(nhls) = 0 as n — co:

(i) For odd l, > 1 the bias B, satisfies

(it) For anyl, > 0, we have that

max |§g( i) — g;(Ugi) — Byn(Ugi) — Sgn(Ugi) — Rgn(Ugi)| = OP((nth/log n)_3/2).

i€{l,....,n}

(iii) For || -|| a matriz norm, we have that

zel{lllaxn} HTL ! ann] ng)” = OP((nth/ log n)*l/Q)_
""" JF#i

Proof. The statement about the bias in part (i) follows from standard Taylor expansion based
arguments. All remaining statements of the Lemma follow from well-known arguments in e.g.
Masry (1996) or Kong et al. (2010) for the usual “leave-in” version of the local polynomial
regression estimator. It therefore only remains to be shown that the difference between such

a “leave-in” estimator and the “leave-one-out” estimator that we consider in this paper is
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of sufficiently small order. To see this for the case of the statement about the first-order

stochastic term in part (i), let
& 1 T -1
Sygn(u) = n Z ey Ngn(u) ng(u)th (Xgj — u)ey;
J
be the “leave-in” analogue of our first-order stochastic term, and note that

max |Sgn(Ugi>| < max |Sgn(Ugi> - S’gn(Ugi” + Sgp |Sgn(u>|

ie{1,...,n} ie{1,...,n}

It follows from e.g. Masry (1996) or Kong et al. (2010) that

sup 3y (1)] = O((nl/og ) 12).

ueS(Uyg)
Moreover, it holds that
~ 1 _
161{11173),( ) 1Sgn(Ugi) = Sgn(Uygi)| e?llﬁi(n} ‘ﬁel g (Ugi) 1wgl<Ugl)th (Xgi — Ugi)egil
< zer{rll,é.}.i(n} |ﬁeINgn(Ugi)_lwgi(Ugi)th (Xgi = Ugi) m’a::( ) |€il

with ¢ as defined in Assumption 2. The desired result then follows from the restrictions on
the bandwidth in the statement of the theorem, and the restrictions on ¢ from Assumption 2.
The remaining statements of the Lemma follow by similar arguments, and we hence omit the
details.

]

B.3. Proof of Theorem 2(b). Having stated the auxiliary results, we now turn to the proof
of Theorem 2(b). We give a proof of parts (a) and (c) below. For notational simplicity, we
drop the “DR” subscript of the estimator. It is straightforward to show that 6 2 6° under

either condition (a), (b) or (¢), and thus we omit the details of proving this step. From the
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differentiability of ¢ with respect to € and the definition of é, it follows that

n

S 0(Z:,6°, &(Uns), &2(Usy))

=1

0—0° = H,(0",)"

3\*—‘

for some 0* between 6° and 6, and H,(0,€) = (1/n) X1, 8p1p(Z;, 0, &1(Uyi), £2(Us:)). Tt then

follows from standard arguments that H,(6*,€) = H + op(1). Next, we expand

U, (0°,8) = n 'Y (2, 0°,6(Ui), &(Us)).

=1

Using the notation that
%1 = aw(ZH 907 t? gg(UQl))/at’t:ff(Uz% wlll - 821/}<Z7«7 007 t7 §§(U2z))/at|t:§f(U1l)7

¢12 = aw(zla 907 ff(Ul”L)’ t)/aﬂt:fé’(Uzi)a %22 = 82¢(Zi’ 007 §§(U1i)7 t>/8t|t:§§’(U2i)7 and

2= 0*(Zi, 0% 1, t2)/8t18t2|t1:§f(U1i)7t2:§g(U2i)7

we find that because of differentiability conditions on the moment function ¢ we have that

n

B0.6) = Luf0,) = 1 S UHE ) ~ G0 + 5 U — §(00)
5 UG ~ G0 + 2R — G0
+ jl i¢32(§1(U1i) — & (UW) (& (Ux) — &(Ua))

s
Il
—

+ OP(“gl — &%) + OP(H§2 — &11%,)-

By Lemma 2(i), the two “cubic” remainder terms are both of the order op(n~'/2) under the
conditions of Theorem 2(b), and thus also under those of Theorem 2(a). In Lemma 3-5
below, we show that the remaining five terms on the right hand side of the previous equation
are also all of the order op(n~'/?) under the conditions of Theorem 2(b). The asymptotic
normality result then follows from a simple application of the Central Limit Theorem.

The proofs of the following Lemmas repeatedly use the result that the smoothness
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conditions on the moment function ¥ combined with the DR property imply that
0 =E(; M(Un)) = E(W; "\ (U1)?) = E(7A2(Uz)) = E@7* Ao (Ua:)?) (B.1)

for all functions A\; and Ay such that & 4+ tA\; € Z; and £ + tAs € =5 for any t € R with |¢|
sufficiently small. To see why that is the case, consider the first equality (the argument is

similar for the remaining ones). By dominated convergence, we have that

\I[(Qo’ gij + t)‘la 55) — \11(807 5?7 55)
t

=0

1 N T
E(y; A (U)) = lim
where the last equality follows since the numerator is equal to zero by the DR property.

Lemma 3. Under the conditions of Theorem 2(b), the following statements hold:

(@) UG W) - (0 = on(n™),
(i) > P EUn) - S(U) = op(n™ )

Proof. We show the statement for a generic g € {1,2}. From Lemma 2 and the restrictions

on the bandwidth, it follows that

ii¢g(§g(Ugi> - €§(ng')) - l i ¢%g(Bgn<Ugi) + Sgn(Ugi) + Rgn(Ugi))

n;3

+ OP(log(n)3/2n—3/2h;3dg/2)7

and since the second term on the right-hand side of the previous equation is of the order
op(n~/?) due to the restrictions on the bandwidth, it suffices to study the first term. As a

first step, we find that
1 & _ _
ﬁ Z:l 77Z}iqun(ng> = E(qvbiqun(ng)) + OP(hﬁyg—Hn 1/2) = OP(hﬁjq+1n 1/2)7

where the first equality follows from Chebyscheff’s inequality, and the second equality follows

from Lemma 2 and the fact that by equation (B.1) we have that E(¢{ By, (Uy;)) = 0. Next,
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consider the term

1 1 B
n ngsgn<Ugi) = n2 Zzwfengn(Ugi) 1ng(Ugi)th (ng - Ugi>5gj'
i—1 i i

This is a second order U-Statistic (up to a bounded, multiplicative term), and since by
equation (B.1) we have that E(¢{e] Ny,(Uyi) " wy;(Ugi) Kn, (Xg; — Ugi)| Xy;) = 0, its kernel is

first-order degenerate. Lemma 1 and some simple variance calculations then imply that
LS~ 17 —dg/2
n ;wz Sgn<Ugi) = Op(n hg )-
Finally, we consider the term
| LA
E Z % Rgn<ng) = Tn,l + Tn,2>
i=1

where

1 _
Ton=— o> vfe) ngn i (Ugi) N (1) ~*wg; (Ugs) K, (X g5 — Ugi)eg; and

1 _
Tn,2 - E Z Z Z wz’geirngn,j(Ugi)Nn(Ugi) 2wgl<Ugi)th (Xgl - Ugi>5gl-
i jFlAELY

Using equation (B.1), one can see that 7T}, is equal to a third-order U-Statistic (up to a

bounded, multiplicative term) with second-order degenerate kernel, and thus
Tn,2 = Op(ﬂig/Qh;dg)

by Lemma 1 and some simple variance calculations. On the other hand, the term T, ; is
equal to n~! times a second order U-statistic (up to a bounded, multiplicative term), with

first-order degenerate kernel, and thus
Tp1=n""Op(n~h,3%/?)) = n~2h %/20p(T),,).

The statement of the lemma thus follows if y — 0 and n*h3% — 0o as n — co, which holds
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due to the restrictions on the bandwidth. This completes our proof. O]

Remark 4. Without any restrictions on the structure of the moment condition, the term
n~' Y ) Bgn(Uy;) in the above proof would be of the larger order O(hls*'), which is the
usual order of the bias due to smoothing the nonparametric component. The fact that DR
moment condition has a zero functional derivative with respect to the nuisance functions is
what removes this term here. Note however that there are also non-DR moment conditions
with this property, such as those where the corresponding moment function is an influence

function in the underlying semiparametric model.

Lemma 4. Under the conditions of Theorem 2(b), the following statements hold:

wil(&(Uu) —&(Uy))? = OP(n_l/Q),

NE

() jb

P (E(Us) — €5(Usi))? = op(n™1?).

Msu

S|

i=1

Proof. We show the statement for a generic g € {1,2}. Note that by Lemma 2 we have that

(& () i )+ Op (<12i(;)>3/2) (()p(hif“) +Op (lofﬁf)» :

where T, 1(u) = Bgn(u)?, Th2(u) = Sgn(w)?, Ths(u) = Rgn(u)?, Tha(u) = 2B, (u)S,,(u),
Th5(u) = 2By, (u)Ryn(u), and T, 6(u) = 25g,(u)Ryn(u). Since the second term on the

right-hand side of the previous equation is of the order op(n~/2) due to the restrictions on
the bandwidth, it suffices to show that we have that n=t X" T, »(U,;) = op(n~1/2) for
k € {1,...,6}. Our proof proceeds by obtaining sharp bounds on n=* > | ¥T, (U,;) for
k € {1,2,4,5} using equation B.1 and Lemma 1, and crude bounds for k € {3,6} simply

using the uniform rates derived in Lemma 2. First, for £k = 1 we find that

Y U T (Un) = B B (U)?) + Op (™ 202072) = Op(n™2122)

=1
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because E(¢{ B, (Uyi)?) = 0 by equation (B.1). Second, for k = 2 we can write

1.
Z wgng Q(U ) = Tn,Q,A + Tn,Q,B

=1
where
Thoa = n3 Zzwgg (Ugi)™ 1ng(Ugi))2th (Xgs — Ugi)ngj
)
Thop = n3 ZZ Z ¢gg (Ugi)™ lng(Ugi)th (Xgj — Ugi)eg;
i gFilFELg

&1 Ngn(Ugi) ™ wgr(Ugs) Ky (Xg1 — Ugi)eg

Using equation (B.1), one can see that T, 5 5 is equal to a third-order U-Statistic with a

second-order degenerate kernel function (up to a bounded, multiplicative term), and thus

Tn,Z,B = Op(n_g/th_dg).

On the other hand, the term T}, 5 4 is (up to a bounded, multiplicative term) equal to n=*

times a mean zero second order U-statistic with non degenerate kernel function, and thus
Tn,2,A = nilOp(nilﬂhidg + nilh;3d9/2) = Op<n73/2hidg) OP( n,2 B)

Third, for £ = 4 we use again equation (B.1) and Lemma 1 to show that

1 _
72%]9]# Ugi) = szwgngn gi) Ngn(Ugi) 1w9j(Ugi>th(ng_Ugi)5gj

nis i=1 j£i

— Op(n~"hy ") - O(lr+),

where the last equality follows from the fact that n=' 37 | ¥¥T, 4(Uy) is (again, up to a
bounded, multiplicative term) equal to a second order U-statistic with first-order degenerate

kernel function. Fourth, for kK = 5, we can argue as in the final step of the proof of Lemma 3
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to show that
12 i )
g E_l ¢11(Zi)Tn75(Ugi) = OP(n 3/2hg dgh;g+1)_

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2:

1 n
n Zwigngv?’(Ugi) - OP(HRgnHio) = OP(IOg(n)2n_2hg_2d9)’
i=1
1 n
n Z@Df‘?ng,G(Ugi) = OP(HRgnHoo) . OP(HSgnHoo) _ OP(IOg(n)S/Qn_3/2hg_3d9/2)_

s
Il
i

The statement of the lemma thus follows if by — 0 and n?h3% /log(n)® — co as n — oo,

which holds due to the bandwidth restrictions. This completes our proof. O

Remark 5. Without the DR property, the term 7}, 5 5 in the above proof would be (up to a
bounded, multiplicative term) equal to a third-order U-Statistic with a first-order degenerate

kernel function (instead of a second order one). In this case, we would find that
Loz = Op(n™hg"/%) + Op(n™*/?h %) = Op(n~'h, "),

On the other hand, in the absence of the DR property, the term T, 5 4 would be (up to a
bounded, multiplicative term) equal to n~! times a non-mean-zero second-order U-Statistic

with a non-degenerate kernel function, and thus we would have

Tpoa =0 h,%) + Op(n~*?h,;%) + Op(n~2h,*%) = O(n""h,%) + op(n~"h, ).

The leading term of an expansion of the sum 7,2 4 + T}, 2,5 would thus be a pure bias term
of order nilh;d-‘?. This term is analogous to the “degrees of freedom bias” in Ichimura and
Linton (2005), and the “nonlinearity bias” or “curse of dimensionality bias” in Cattaneo
et al. (2013). In our context, the DR property of the moment conditions removes this term,
which illustrates how our structure acts like a bias correction method. For a non-DR moment

condition based on an influence function this term would not vanish.
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Lemma 5. Under the conditions of Theorem 2(b), the following statement holds:

:L Zn:wlz(&([]h) £(U1)) (&(Uy) — €5(Us)) = op(n1/?).

=1

Proof. By Lemma 2, one can see that uniformly over v = (uy, us) we have that

)
9 3/2
= kz_: Tox(u) +Op ((1(;3(;)) ) (Op(hl;“) L Op (l(;g;f;)))

3/2
(3 ot ()

where T, 1(u) = By,(u1)Ban(us), Tho(u) = Byn(ur)San(usz), Ths(u) = Byy(ur)Re,(us),
Toa(u) = Sin(ur)Ban(uz), Tns(u) = Sin(u1)San(uz), The(u) = S1n(ur) Ron(uz), Tor(u) =
Ry (u1) By (ug), Thg(u) = Ry p(u1)San(ug), and Ty, 9(u) = Ry p(ui)Ra ., (ug). Since the last
two terms on the right-hand side of the previous equation are easily of the order op(n=1/%)
due to the restrictions on the bandwidth, it suffices to show that for any for k € {1,...,9}
we have that n=' 37 12T, 1(U;) = op(n~'/?). As in the proof of Lemma 4, we proceed by
obtaining sharp bounds on n=t Y1 | ¥1*T,, (U;) for k € {1,...,5,7} using a similar strategy
as in the proofs above, and crude bounds for k € {6,8,9} simply using the uniform rates

derived in Lemma 2. First, arguing as in the proof of Lemma 3 and 4 above, we find that
1 n
— 3P T (Us) = B Bun(Us) Bon(Uai)) + Op(n™2hy T hi ™) = Op(hyHhg ™),

where the last equation follows from the fact that E(¢}2 By, (Uy;) Ban(Us)) = O(h2 TR,

Second, for k = 2 we consider the term

1 1
; Z 7/12-12Tn,2(Ui) = ﬁ Z Z ¢32Bl,n(U1i)€1TN2,n(U2i)71w2j(UQi)th (Xz,j - U2i)52,j-
i i ji

This term is (up to a bounded, multiplicative term) equal to a second-order U-Statistic with
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non-degenerate kernel function. Lemma 1 and some variance calculations then imply that

1 -
=Y U Ta(U) = Op(n™ ) 4 Op(n ™ hy ™2 t).

i
Using the same argument, we also find that

1 _
=P Ta(U) = Op(n™ PR ) + Op(n™ by ™).

)

For k = 3, we can argue as in the final step of the proof of Lemma 3 to show that

1 & _
ﬁ Z¢32Tn,3(Uz> _ Op(n_1h2 d2/2hl11+1) + OP(n—?)/ZhQ—dzhllﬁ-l)7
i=1

and for the same reason we find that
1 & 12 —1p—d1/2715+1 —3/23 —d1 7,la+1
— > T 7(U;) = Op(n™'hy ™ "hg* ') + Op(n~*?hy “hg ™).

Next, we consider the case £ = 5. This term is the only one for which we exploit the

condition (3.4). We start by considering the decomposition

1
o Z ¢32Tn,5(Ui) =Ths4+ThsB,

where
Topa= o) ZZW Nln (Un)~ wl](Ulz)Khl(le Uti)er;)
)
(e Nop(Usi) ™ wo (Uni) Kny (Xoj — Usi)eay),

TosB = 3 ZZ > ie] Nip(Uri) ™ wij(Usg) Ky, (X1 — U)en;
i jF#ELlF#,g

-] Nop(Usy) oy (Usi) Ky (Xoy — Usy)eay.

Here term T, 5 5 is equal to a third-order U-Statistic (up to a bounded, multiplicative term)
with first-order degenerate kernel. Finding the variance of this U-Statistic is slightly more

involved, as it depends on the number of joint components of U; and U,. Using Lemma 1
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and some tedious calculations, we obtain the following bound:
55 = Op(n~ max{h; ™/? hy®/*}) + Op(n=*2h; "/*h, %),

This bound is sufficient for our purposes. Since this step of the proof is important, we are
providing some more details about this calculation. Let \;j; = Kp, (X1, — Uy;)e1; Kp, (Xo —
Usi)eq. 1t is easy to see that the variance of Tn,S,B =n3Y, D j#i 2z Niji is of the same
order as T, 5 g, and thus we focus on the former. Define Z; = (Uy;, Uy), Z; = (X3, €1)

and Z; = (Xy,ey). It is easy to see that for distinct values of i,j and [ we have that

E<)\ijl) = E()\z]l|zz) = E()\UZ|Z]> = IE(/\UZ|ZZ) = O, and thus Tn,S,B has mean zero and
first-order degenerate kernel. It also holds that E(\;;i|Z;, Z;) = E(\;i|2:, Z1) = 0. Using the

notation from Lemma 1, we thus have that

pi’2 = Var(]E()\iMZl, Zj)) = Var (/ Kh1 (le — ul)Khz (Xgl — 'LLQ)fU('Lbl, u2)du1du251j€21> .

The order of p, 2 thus depends on the number of joint components of U; and Us, or, more
precisely, the effective dimension of the support of (Uy, Us). The “best case” would be that
(U1, Us) has effective support of dimension d; + dy, in which case p,, 2 = O(1). The “worst
case” would be that U, = Us, in which case p,2 = O(max{h; /?, hy®/*}). This “worst case”

bound is sufficient for our purposes. Now consider

Pi,s = Var(E(\iji| Z;, 25, 21))

= E (b K ((Xy; = Uni) /) *hg ™ K (Xar — Uni) [ho)’e1,65) = O(hy " hy ™).
From Lemma 1 we then obtain the desired result that

Tnss = Op(n " pna) + Op(n=?p, 3)

= Op(n—l max{hl—dl/Q, h2—d2/2}> 4 OP(n—3/2hl—d1/2h2—d2/2>7

Now consider the term 7, 5 4, which is equal to n~! times a second order U-statistic (up
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to a bounded, multiplicative term). Since condition (3.4) implies that E(e165]| X7, X5) = 0,
we find that this U-Statistic has mean zero. The calculation of its variance is again slightly
more involved, and the exact result depends on the number of joint components of U; and
U,, and on the number of joint components of X; and X,. After some calculations similar to

those detailed above, we obtain the bound that

Tosa=n""-Op(n " max{h;™ hy*} + Op(n~" max{hy " hy®, by hy /%))
= n_l/QOp(maX{nhl_dl,nhz_d2} + max{n_l/Qh;dl/thEdz’, nhl—dln—l/2h2—d2/2})

= OP(n_l/Q)

under our restrictions on the bandwidths (in fact, our restrictions imply the much stronger
result that T}, 5 4 = Op(n~"/%)). We again provide some more details about this calculation.
Let \ij = Kj, (X1; — Uny)erj K, (Xa; — Usi)eg;. It is easy to see that Tn@A =n3Y, 2 jti A
is of the same order as T}, 5 4, and thus we focus on the former. Define Z; = (Uy;, Uy;) and

Z: = (le, XQj, 51j752j)- We then have that for ¢ 7é]

J

E()‘ij) = E[E(gla’g?j‘zia Xj)Km (le - Uli)KhQ(Xw - U2i)]

= E[E(e1j62;|X;) Kny (X1 — Uri) Kny (Xo5 — Uzi)] = 0,

where the last equality follows from (3.4) and the fact that the data are ii.d. Hence T}, 5 4 is
mean zero. We also clearly have that E();;|Z;) = 0. Using notation from Lemma 1, it then

follows that
Py = Var(E(X| 25)) = Val"(/ Ky (X1 = un) Ky (Xoj — u2) fu (ur, uz)dur dusey o)

The order of p,; thus depends on the number of joint components of U; and Us, and of X;
and Xy; or, more precisely, the effective dimension of the support of (U, Us) and (X7, X3).

The “best case” would be that (Uy,Us) has effective support of dimension d; + dy, in which
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case p,1 = O(1). The “worst case” would be that U; = U, and X; = X5, in which case
pn1 = O(max{h;™ hy;®}). This “worst case” bound is sufficient for our purposes. Now

consider
piy = Var(E(\;| 2, Z;)) = E (hf2d1K((X1j — Uy)/h)?hy "2 K (X — UQi)/h2)2€%j€§j) :
Under the “worst case” scenario that U; = U, and X; = X5 we then find that
Pnz = O(max{hy @ hy*®, hy*"hy}).
From Lemma 1 we then obtain the desired result that

Tn,5,A =n"' (OP(n_l/zpn,l) + OP(n_lpn,z))

= OP(nig/2 max{hl’dl, h;dg}) -+ OP(?”L72 max{h;dl/thdz’ h;dl h;dQ/Z}).

Finally, we obtain a number of crude bounds based on uniform rates in Lemma 2 for the

following terms:

> U Ts(U) = Op(S1all) - Op (| Raulloe) = Op(log(n)*/*n~>2hy 1 hy ),

7

—_

V2T, (U) = Op(|Binll) - Op(Sanlloc) = Op(log(n)®/?n=™2hz b %0112,

Sl 31— 3|+
I

-

@
Il
—_

VT 9(U) = Op([Rinlloe) - Or (I Ronlloo) = Op(log(n)’n=hy ™ hy "),

The statement of the Lemma then follows from the restrictions on the bandwidth. This

completes our proof. O

Remark 6. The derivation of the order of the term 7,5 4 is the only step in our proof
that requires the orthogonality condition (3.4). Without this condition, the kernel of the
respective U-Statistic would not be mean zero, and in general we would only find that

Thsa=O0p(n™ max{hl_dl, h§d2}).
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B.4. Proof of Theorem 2(a). This result can be shown by following the steps of the proof

of Theorem 2(b), and adapting the argument as indicated in the Remarks 4-6.

B.5. Proof of Theorem 2(c). The difference between Case 1 and Case 2 is that £ is now
a density function. This actually simplifies the problem, as a stochastic expansion of the kind
given in Lemma 2 is easier to obtain and of a substantially simpler form for kernel density
estimators relative to the local polynomial estimator. In particular, it is easy to see that

under the conditions of the Theorem we have that
&(X:) = &(X:) + Bi(X,) + S1(X3)

Here B;(X;) = E(K,(U; — X;)|X;) = O(h!*1) is a deterministic bias function and S;(X;) =
(K (U — X3) —E(K3 (U — X;)|X;)) /n = Op((nh?/log(n))~'/?) is a mean zero stochastic
term. The proof then follows from using the same arguments as in the one of Theorem 2(b),

but using this simpler expansion of the kernel density estimator.

B.6. Proof of Theorem 1. The estimator has the same structure as the one studied in
Theorem 2(b), and thus the statement follows from the same kind of arguments. Note that

the condition (3.4) is satisfied here since

E(D(m(Y, X,0°) —E(m(Y, X,0°)|D =1,X)) - (D —E(D|X))|X)

= E((m(Y, X,6°) — E(m(Y, X,0°)|D = 1,X))|D = 1, X) - (1 — E(D|X)) - E(D|X) = 0.

by the Law of Iterated Expectations.

C. ADDITIONAL SIMULATIONS

In this section, we consider again the simulation study in Section 2.4 in the main text. In
particular, we study how the performance of the estimators considered in Section 2.4 changes

in response to changes in the the distribution of the covariate X, which is uniform on [0, 1]
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in the main text. Specifically, we consider a symmetric triangular distribution, a Beta(2,4)
distribution, and a Beta(4,2) distribution. The three alternative distributions differ from a
uniform one in that their density is not bounded away from zero over their support; and the
latter two are also asymmetric. All other aspects of the data generating process remain the
same (but of course the implied values of 6, and ¥,;p change accordingly).

In Figures 2-5 we plot the simulated MSE, absolute bias and variance of the kernel-based
IPW estimator against the results for the kernel-based STS-DR estimator. For convenience,
Figure 2 replicates the results for the uniform covariate distribution from the main text,
while Figures 3—5 show results for a triangular, a Beta(2,4), and a Beta(4,2) distribution,
respectively. As one can see, the results are very similar qualitatively. In particular, the value
of the MSE of the STS-DR estimator as a function of the two bandwidths is rather flat over
the range of bandwidths considered here for all simulation designs (there is a spike in the
MSE of the STS-DR estimator for very small values of the bandwidth used to estimate the
propensity score in case of the triangular and the Beta(4,2) covariate distribution, but it is
much less pronounced than the one of the IPW estimator). Our exercise thus shows that
the findings reported in Section 2.4 are not an artifact of the specific covariate distribution

considered there.
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Figure 2: Simulation results for U ~ UJ0,1]: MSE, absolute bias and variance of g[PW_ i for
various values of hy (bold solid line), compared to results for §D r—k with bandwidth hy equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).
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Figure 3: Simulation results for U ~ Triangular[0, 1]: MSE, absolute bias and variance of 7 IPW—K
for various values of hy (bold solid line), compared to results for §D r_xk with bandwidth h; equal
to .05 (short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long
dashed dotted line), and .5 (thin solid line).
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Figure 4: Simulation results for U ~ Beta(2,4): MSE, absolute bias and variance of é\[PW_ i for
various values of hy (bold solid line), compared to results for §D r—k with bandwidth hy equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).
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Figure 5: Simulation results for U ~ Beta(4,2): MSE, absolute bias and variance of 6;pw_x for
various values of hy (bold solid line), compared to results for §D r—rk with bandwidth h; equal to .05
(short-dashed line), .08 (dotted line), .13 (dot-dashed line), .2 (long dashed line), .32 (long dashed
dotted line), and .5 (thin solid line).
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Table 2: Simulation results for IPW: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

hy | nxMSE  nxBIAS nxVAR Coverage Rate (hi)

05 .08 .13 .20 32 .50
~ .05 .489 .398 330 832 826 .823 .826 .843  .868
Orpw—x .08 373 .329 265 .872 870 .869 .871 885 .903

.13 .323 .289 239 .885 884 .883 .884 895 911
.20 .268 189 232 908 906 .906 .907 914 1926
.32 .229 .022 229 926 .924 924 .923 928 937
.50 .288 .245 228 .878 879 .878 .876 .879  .887
hy | nxMSE nxBIAS nxVAR Coverage Rate (hi)

.05 .08 13 .20 .32 .50
~ .05 .639 282 560  .825 .801 .840 .921 993 .788
Orpw—rK .08 .934 .020 934 761 .734 774 .885 990 .698

.13 788 .205 747 756 729 773 .899 .988 .669
.20 .646 176 615 .810 .786 .832 .935 994 744
.32 397 .354 272 903 .879 .920 .980 1.000 .860
.50 .252 .153 229 938  .929 .944 .980 998 .909
hy | nxMSE nxBIAS nxVAR Coverage Rate (hi)
1 2 3 4 7 10
~ 1 497 515 232 7144 725 731 .730 726 .725
Orpw —os 2 244 .063 240 934 912 914 912  .909 .909
3 232 .028 231 950 .926  .924 .923 920  .919
4 221 .009 221 954 928 928 .926 924 924
7 222 011 222951 .929 .929 928 925  .923
10 .236 .028 236 942 919 921 919 916 .914
hy | nxMSE nxBIAS nxVAR Coverage Rate (hi)

.50 .65 .80 .95 1.10 1.25

0 .50 .359 .339 244 818 .821 .824 .826 827 837
IPW=SP g5 252 170 223 .894 .897 .900 .901  .901 .909
.80 .226 .077 220 913 916 .919 .920 922 .930
.95 233 .025 232 913 915 916 918 919 931
1.10 .258 181 225 889 .893 .897 .898 .899  .908
1.25 .613 .633 212 644 .647 .651 .652 .648 .651
hs | nxMSE /nxBIAS nxVAR Coverage Rate
~ .05 271 .011 271 0.95
Orpw—ns o5 | 301 062 208 0.96
.13 .328 .185 .294 0.96
.20 275 .156 .251 0.95
.32 .264 .209 .220 0.91
.50 012 .552 .207 0.74

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and
bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the

interquartile range were removed for the computation of the summary statistics.
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Table 3: Simulation results for REG: mean-squared-error, absolute bias, variance and empirical
coverage rate of confidence intervals for various nonparametric first-stage estimators and smoothing
parameters

Coverage Rate (h)
.05 .08 .13 .20 .32 .50

h; | nxMSE nxBIAS nxVAR

~ .05 210 .052 207 948 945 943 940 936 .932
Orpc-K .08 227 136 208 938 936 934 929 926 .923
.13 282 .266 211 910 .907 .905 .901 .896 .889
.20 308 .303 216 892 .889 .888 .882 .877 .873
.32 211 .030 210 952 950 .948 .944 940 935
.50 .295 313 970 .923 0 .920 914 906 .895 .884

Coverage Rate (hz)

h; | nxMSE /nxBIAS nxVAR
.05 .08 .13 .20 .32 .50

N .05 .926 021 925 837 .829 826 .831 .836 .822
OrEG-TK g 643 011 643 871 .863 .858 .866 .869 .857
13 .856 152 833 897 .892 888 .893 .894 .884
.20 3.713 496 3.467 .816 .810 .809 .819 .827 .806
.32 8.592 281 8514 993 .989 .981 .98 .991 .987
.50 228 157 203 949 938 931 .938 .942 .927
h; | nxMSE nxBIAS nxVAR Coverage Rate (hs)
1 2 3 4 7 10
~ 1 612 652 A87 671 731 749 747 751 .753
OrEc-0s 2 .204 .081 197 931 938 .940 .941 .940 .942
3 203 016 203 931 936 .939 .939 .940 .940
4 .203 .009 203 930 .934 936 .937 .938 .940
7 .206 .001 206 926 931 .932 931 .931 .932
10 218 .004 217 919 926 .926 .927 927 .927
h; | nxMSE nxBIAS nxVAR Coverage Rate (hs)
.50 .65 .80 .95 1.10 1.25
7 .50 .209 .004 209 925 926 .927 .927 925 .920
REG-SP g5 .205 .003 2205 .932 932 931 .931 929 .925
.80 203 .003 203 934 935 934 935 .932 .927
.95 201 .006 200 .937 937 939 939 .935 .929
1.10 203 .091 195 936 937 .938 938 .935 .928
1.25 331 .381 186 .864 .868 .870 .872 .862 .837
h; | nxMSE /nxBIAS nxVAR Coverage Rate
A .05 .210 .050 207 0.94
OreG-BS g 227 134 .209 0.93
.13 .282 267 211 0.90
.20 311 .309 216 0.89
.32 212 .038 210 0.94
.50 .290 .305 197 0.87

Results from 5,000 replications for first-stage kernel (K), twicing kernel (TK), orthogonal series (OS) and spline (SP), and
bootstrap bias corrected kernel (BS) estimation. Outliers deviating from the simulation median by more than four times the

interquartile range were removed for the computation of the summary statistics.
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