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1. INTRODUCTION

Regression discontinuity (RD) designs (Hahn et al., 2001; Lee and Lemieux, 2010) allow for
simple identification of treatment effects from observational data under transparent condi-
tions. In empirical practice, researchers often carry out various robustness or falsification
exercises to support the credibility of these conditions. One such exercise is the so-called
“donut” RD design (Barreca et al., 2011), which involves repeating estimation and inference
without the data points in some area around the treatment threshold. This approach is
often motivated by concerns that possible systematic sorting of units or other data issues in
some neighborhood of the treatment threshold might distort estimation and inference of RD
treatment effects. The intuition is that if such concerns were unwarranted, then excluding
data near the threshold should not change the empirical conclusions in a meaningful way.

While the donut approach is very popular in empirical practice, it is generally carried
out in a heuristic fashion without much supporting statistical theory. For example, it is
typically unclear how large the difference between conventional and donut RD has to be in
order to justify concerns about the validity of the usual RD assumptions, or whether a donut
RD approach yields more accurate estimates or confidence intervals than a conventional one.
These issues are not trivial: if the usual RD assumptions hold, removing observations near
the cutoff is easily seen to increase both the bias and variance of RD estimates through more
extensive extrapolation of fitted functions and reduced effective sample size, respectively;
and the magnitudes of these effects are not immediately clear. Conventional and donut
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Figure 1: Average 1-year mortality rates of infants with birth weights around 1500g. Size of dots
is proportional to number of observations. Left panel shows local linear RD fit with uniform kernel
and bandwidth of 85g. Right panel shows fit of same specification when data points with birth
weight between 1497g and 1503g are excluded from the data.

RD estimates are also highly correlated because they mostly use the same data, and thus
statistically valid comparisons need to be executed carefully.

To give a concrete example, Figure 1 shows average 1-year mortality rates of infants with
birth weights around 1500g, a “very low birth weight” threshold that often triggers additional
medical interventions. A local linear RD regression, as in Almond et al. (2010), with uniform
kernel and bandwidth of 85g implies a both empirically and statistically significant RD
estimate of 0.95% with standard error 0.22%. Barreca et al. (2011) argue that this result
could be driven by the heaping points at 1500g and 1503g (which correspond to 100g and
1oz multiples, respectively, and are possibly caused by non-random reporting errors). A
donut RD that excludes observations within 3g of the 1500g threshold changes the point
estimate to 0.16%, and its standard error to 0.28%. While this result appears qualitatively
different from the conventional one at face value, there is no formal framework to judge,
for example, whether the donut estimate could be driven by extrapolation bias, whether
the donut standard error or the implied confidence interval are actually valid, or whether
the difference between the conventional and the donut estimate is sufficiently large to be
considered unlikely to be caused by random sampling alone.

This paper provides econometric tools to answer such questions. First, we show that
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donut RD estimates have substantially higher bias and variance than conventional estimates
if the usual RD assumption hold. For example, we show that with local linear estimation
excluding units that deviate at most 10% of the main bandwidth from the treatment thresh-
old increases the bias by 41% to 63%, and the variance by 53% to 61%, depending on the
type of kernel function used. Second, we show that recently developed bias aware confidence
intervals (Armstrong and Kolesár, 2018, 2020; Kolesár and Rothe, 2018) remain valid in the
context of donut RD designs without special adjustments. Excluding data near the thresh-
old can increase the length of those confidence intervals substantially though: for example,
excluding units that deviate from the treatment threshold by at most 10% of the bandwidth
value increases the asymptotic length of the confidence interval by 22% to 28%, depending
on the kernel. Third, we provide valid statistical tests for the equality of conventional and
donut RD estimands in the bias-aware framework that takes the dependence patterns of the
estimates into account. We also provide a new version of such a donut specification test that
often has better power properties than the approach currently used in practice.

2. FRAMEWORK

2.1. Conventional RD Design. Consider a basic sharp regression discontinuity design
in which the researcher is interested in the causal effect of a binary treatment. The data
are an independent sample {(Yi, Xi, Ti), i = 1, . . . , n} of size n from some large population.
Here Yi ∈ R is the outcome of interest, Xi ∈ R is the running variable, and Ti ∈ {0, 1} is
an indicator for the event that unit i receives the treatment. Units receive the treatment
if and only if the running variable exceeds some known threshold, which we normalize to
zero without loss of generality, so that Ti = 1{Xi ≥ 0}. Writing m+ = limx↓0 m(x) and
m− = limx↑0 m(x) for the right and left limit, respectively, of a generic continuous function
m at zero, we also denote the jump in the conditional expectation of the observed outcome
given the running variable at zero by

τ = µ+ − µ−, µ(x) = E(Y |X = x).

The core assumptions in a conventional RD analysis imply that the only systematic difference
between units on either side of the treatment threshold is their treatment assignment. In this
case, τ corresponds to the average treatment effect among units at the threshold. Specifically,
if units have potential outcomes Yi(1) and Yi(0) with and without receiving the treatment,
respectively, so that Yi = Yi(Ti), and the conditional expectation of these potential outcomes
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given the running variable is smooth around the cutoff, then

τ = E(Yi(1)− Yi(0)|Xi = 0).

2.2. Conventional and Donut RD Estimator. Due to its attractive theoretical properties
and easy implementation, local linear regression (Fan and Gijbels, 1996) has arguably become
the most commonly used estimation strategy in RD designs. Specifically, the local linear
estimator of τ is given by

τ̂(h) = e⊤1 argmin
β

n∑
i=1

Kh(Xi)(Y − (Ti, Xi, TiXi, 1)
⊤β)2

Here K is a kernel function with compact support, say [−1, 1], h > 0 is a bandwidth,
Kh(x) = K(x/h)/h, and e1 = (1, 0, 0, 0)⊤ is the first unit vector, whose role in the above
formula is simply to extract the appropriate coefficient from the right-hand side. Local linear
regression thus proceeds by fitting linear specifications with different intercept and slope on
either side of the threshold by weighted least squares, giving non-zero weights to units with
running variable values Xi ∈ [−h, h] only.

In a “donut RD” analysis, observations that are immediately surrounding the treatment
threshold are excluded from the data. Practitioners generally motivate such an approach
with concerns that due to possible systematic sorting of units in some neighborhood of the
treatment threshold the parameter τ might not correspond to a meaningful causal effect; see
below for details. With d ∈ [0, h) a constant chosen by the researcher, the local linear donut
RD estimator is

τ̂(h, d) = e⊤1 argmin
β

n∑
i=1

K(Xi/h)(Y − (Ti, Xi, TiXi, 1)
⊤β)21{|Xi| ≥ d}.

This corresponds again to fitting linear specifications via weighted least squares on either
side of the threshold, but now non-zero weights are only given to units with Xi taking values
in the “donut-shaped” set [−h,−d]∪ [d, h]. This estimator of courses nests the conventional
one as a special case, i.e., τ̂(h, 0) = τ̂(h).1 Also note that we will use throughout the paper
that by simple least squares algebra we can write local linear RD estimators as weighted

1Our focus in this paper is on the special case in which the same bandwidth h and donut size d are used
on either side of the threshold, but our analysis can easily accommodate asymmetric settings at the cost of
a slightly more involved notation. For simplicity, we also focus on the case of sharp RD designs, but our
results extend immediately to fuzzy RD designs as well.
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averages of the outcomes,

τ̂(h, d) =
n∑

i=1

wi(h, d)Yi, τ̂(h) =
n∑

i=1

wi(h, 0)Yi ≡
n∑

i=1

wi(h)Yi,

with weights that depend on the data through the realizations Xn = {X1, . . . , Xn} of the
running variable only.

2.3. Donut RD Estimand. To study the properties of the donut RD estimator, we must
define a corresponding target parameter that is potentially different from the target param-
eter of conventional RD. However, donut RD designs are often only heuristically motivated
in the empirical literature by concerns about sorting or other data issues near the cutoff.
We therefore introduce a simple but general model that is intended to be applicable in wide
range of empirical settings.

Specifically, we assume that there is a hypothetical sample {(Yi(1), Yi(0), X
∗
i , Xi, Ti), i =

1, . . . , n} of size n from a large population, where X∗
i is a “natural” running variable that

would be observed in the absence of the possible data issues or the mechanism that induces
sorting, such that

E(Yi(t)|X∗
i = x) is continuous for t ∈ {0, 1}.

All other variables are as described above. The observed running variable Xi is further
assumed to be identical to X∗

i for those units whose realization of the latter falls outside the
donut hole, and to fall into the donut if X∗

i does so as well. That is,

Xi = X∗
i if |X∗

i | ≥ d, and |Xi| < d if |X∗
i | < d,

Treatment assignment is based on the observed running variable, so that Ti = 1{Xi ≥ 0}, and
the observed outcome is Yi = Yi(Ti). The parameter of interest is the average treatment effect
among units whose “natural” value of the running variable is at the treatment threshold:

τ ∗ = E(Yi(1)− Yi(0)|X∗
i = 0) = µ∗

+ − µ∗−, µ∗(x) = E(Yi|X∗
i = x),

which is generally different from τ = µ+ − µ−, the jump in the conditional expectation
E(Yi|Xi = x) of the observed outcome given the observed running variable at zero.

The setup implies that we can learn the function E(Yi(t)|X∗
i = x), t ∈ {0, 1}, from the
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distribution of observable quantities for values of x outside the “donut hole”:

µ(x) =

E(Yi(1)|X∗
i = x) if x ≥ d,

E(Yi(0)|X∗
i = x) if x ≤ −d.

To make further progress, we assume that the function µ∗ falls into the usual smoothness
class of twice continuously differentiable functions 8except for the threshold) with bounded
second derivatives, that is generally used to justify local linear regression approaches. That
is, we assume that

µ∗ ∈ F(M) = {m1(x)1{x ≥ 0}+m0(x)1{x < 0}, ∥m′′
t (·)∥∞ ≤ M, t ∈ {0, 1}}, (2.1)

where M > 0 that is a uniform smoothness bound that is assumed to be known by the
analyst.

2.4. Large Donut vs. Small Donut Asymptotics. To study the large sample properties
of donut RD estimation, one will need to take stand on the size of the donut d relative to
the bandwidth h.

Assumption 1 (Small Donut). d = ch for some c ∈ [0, 1), h → 0 and nh → ∞ as n → ∞.

Assumption 1 is our main framework, which we call “small donut asymptotics”. It uses
a theoretical device in which the donut size is modeled as proportional to the bandwidth
that tends to zero at an appropriate rate. Small donut asymptotics model to the common
empirical practice of removing only few observations close to the cutoff in a donut analysis.
As we show below, under Assumption 1 the parameter τ ∗ is point identified and can be
consistently estimated, but the size of the donut can have a substantial impact on the bias
and variance properties.

Assumption 2 (Large Donut). d is fixed, h → d and n(d− h) → ∞ as n → ∞.

Assumption 2 is an alternative “large donut” asymptotic framework that treats d as fixed
and the bandwidth as approaching d at an appropriate rate. This would be appropriate for
settings in which the range of the support of the running variable that is used for estimation
is much smaller than the gap created by the donut that needs to be extrapolated. Under
such a framework the parameter τ ∗ is only partially identified, as even in large samples no
data accumulates in small neighborhoods around the cutoff. Instead, we can only infer from
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the shape restriction µ∗ ∈ F(M) that

τ ∗ ∈ T (M) ≡ {m+ −m− : m ∈ F(M) and P (|m(Xi)− µ(Xi)| · 1{|Xi| ≥ d} = 0) = 1} .

With a continuously distributed running variable, the identified set T (M) is easily seen to be
an interval of length 2Md2 around the linear extrapolation of µ from the edge of the donut
to the cutoff:

T (M) = [τLin(d)±Md2], τLin(d) = µ(d)− µ(−d)− d(µ′(d) + µ′(−d)).

In this case consistent estimation of τ ∗ is clearly not possible, but this does of course not
preclude valid inference.

2.5. Regularity Conditions. In addition to the two asymptotic frameworks above, we also
introduce some further, and largely standard, regularity conditions.

Assumption 3. The running variable Xi is continuously distributed with continuous density
fX that is bounded and bounded away from zero over an open interval that contains the donut
hole.

Continuity of the running variable often assumed in the RD literature, although it is not
necessary for valid estimation and inference based on local linear regression (Armstrong and
Kolesár, 2018; Kolesár and Rothe, 2018). We still maintain this assumption throughout the
paper as it often simplifies the derivations of explicit asymptotic approximations.

Assumption 4. (i) For all x ∈ X and some q > 2 E[(Yi − E[Yi|Xi])
q|Xi = x] exists and

is uniformly bounded; (ii) V[Yi|Xi = x] is L-Lipschitz continuous for all x ∈ X \ {0} and
uniformly bounded away from zero.

These conditions are needed in order to apply a central limit theorem in various places.

Assumption 5. The kernel function K is a bounded and symmetric density function func-
tion that is continuous on, and equal to zero outside of, some compact set, say [−1, 1];

This assumption is satisfied by most standard kernel functions, like the uniform, trian-
gular or Epanechnikov kernel, for example. Kernel functions with unbounded support, like
the Gaussian kernel, could be accommodated at the cost of algebra. Note that we use the
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notation that

BK(c) =

∫ 1

c

JK(u, c)K(u)u2du, SK(c) =

∫ 1

c

JK(u, c)
2K(u)2du,

JK(u, c) = e⊤1

(∫ 1

c

(1, t)⊤(1, t)K(t)dt

)−1

(1, u)⊤,

for any constant c ∈ [0, 1), for the remainder of this paper.

3. POINT ESTIMATION

In this section, we study the properties of τ̂(h, d) as a point estimator of τ ∗. It is easy
to see that under large donut asymptotics and our regularity conditions this estimators
is inconsistent and instead converges in probability to the midpoint of the identified set,
τ̂(h, d) = τLin(d) + oP (1). We hence we focus on the more interesting case of small donut
asymptotics. Denote the bias and variance of τ̂(h, d) conditional on the realizations Xn =

{X1, . . . , Xn} of the running variable by b(h, d) = E(τ̂(h, d)|Xn) and s2(h, d) = V(τ̂(h, d)|Xn),
respectively, and note that these terms can be written as

b(h, d) =
n∑

i=1

wi(h, d)(µ(Xi)− τ ∗) and s2(h, d) =
n∑

i=1

wi(h, d)
2σ2

i ,

with σ2
i = V(Yi|Xi) the conditional variances of outcomes given their corresponding running

variable values. The following theorem gives asymptotic approximations to these quantities.

Theorem 1. Suppose that (i) Assumption 1 holds; and (ii) Assumptions 3–5 hold. Then
τ̂(h, d) = τ ∗ + oP (1) and

b(h, d) = h2BK(c)
µ′′
Y+ − µ′′

Y−

2
+ oP (h

2),

s2(h, d) =
1

nh
SK(c)

(
σ2
+

f+
+

σ2
−

f−

)
+ oP

(
1

nh

)
.

The result shows that the size of the donut affects the asymptotic bias and variance of the
donut RD estimator through the kernel constants BK(c) and SK(c) only. These constants
can differ quite substantially from their “no donut” counterparts BK(0) and SK(0) even for
moderate values of c. To illustrate this, Figure 2 shows the relative changes BK(c)/BK(0)

and SK(c)/SK(0) for c ∈ (0, .2) for three commonly used kernel functions. For example, with
c = .1, which corresponds to a donut RD that removes the observations that differ by less
than 10% of the chosen bandwidth from the cutoff value, the bias increases by 41% to 63%,
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Figure 2: Ratio of “donut” and “no donut” asymptotic bias and variance kernel constants as a
function of donut size for uniform (—), triangular (−−−) and Epanechnikov (· · ·) kernels.

and the variance increases by 53% to 61%, depending on the type of kernel function used.2

Remark 1 (Worst Case Bias). Note that, following Armstrong and Kolesár (2018), the
conditional bias b̄(h, d) can be bounded in finite samples uniformly over F(M) as

sup
µ∗∈F(M)

|b(h, d)| ≡ b̄(h, d) = −M

2

n∑
i=1

wi(h, d)X
2
i sign(Xi).

This “worst case” bias bound can be calculated explicitly from the data, and satisfies

b̄(h, d) = h2BK(c)M + oP (h
2)

under the conditions of the theorem.

4. CONFIDENCE INTERVALS

In this section, we study confidence intervals for τ ∗ based on the donut RD estimator τ̂(h, d).
In particular, we argue that recently developed “bias-aware” confidence intervals (Armstrong

2To give a point of reference for these numbers, note that reducing the bandwidth of the conventional
RD estimator by 10%, which removes observations within two slices of width .1h at the outside rather than
the inside of the estimation window, reduces the asymptotic bias by 1− (.9h)2/h2 = 19%, and increases the
variance by only 1− (n.9h)−1/(nh)−1 ≈ 11%.
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and Kolesár, 2018, 2020; Kolesár and Rothe, 2018) are valid in donut RD designs under either
large or small donut asymptotics without particular adjustments. To explain the construction
of these confidence intervals, recall that the “worst case” bias of the donut RD estimator is

b̄(h, d) = −M

2

n∑
i=1

wi(h, d)X
2
i sign(Xi)

which can be computed from the data, and note that natural estimates of its conditional
variance are of the form

ŝ2(h, d) ≡ V̂(τ̂Y (h, d)|Xn) =
n∑

i=1

wi(h, d)
2σ̂2

i .

Here the σ̂2
i are suitable estimates of the conditional variances σ2

i = V(Yi|Xi), such as nearest-
neighbor estimators (Abadie and Imbens, 2006; Abadie et al., 2014). We can then decompose
the usual t-statistic

τ̂(h, d)− τ ∗

ŝ(h, d)
=

τ̂(h, d)− τ ∗ − b(h, d)

ŝ(h, d)
+

b(h, d)

ŝ(h, d)
.

as the sum of a term that is approximately standard normal in large samples, and a term
that can be bounded in absolute value by b̄(h, d)/ŝ(h, d). This decomposition that motivates
the bias-aware confidence interval:

Cn(d) =

[
τ̂(h, d)± cv1−α

(
b̄(h, d)

ŝ(h, d)

)
ŝ(h, d)

]
with cv1−α(r) the 1− α quantile of |N(r, 1)|.

Theorem 2. Suppose that (i) either Assumption 1 or 2 holds; (ii) Assumptions 3–5 hold;
and (iii) ŝ2(h, d) = s2(h, d)(1 + oP (1)). Then

lim inf
n→∞

inf
µ∗∈FH(M)

P (τ ∗ ∈ Cn(d)) ≥ 1− α.

The donut confidence interval Cn(d) is generally wider than its conventional counterpart
Cn ≡ Cn(0) if µ = µ∗ because the donut generally increases both the standard error and
the bias to standard error ratio. Under small donut asymptotics, if h is chosen to minimize
the “worst case” asymptotic MSE (which implies that b̄(h)/ŝ(h) = 1/2+ oP (1)) , the length
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Figure 3: Ratio of asymptotic length of bias-aware “donut” and conventional confidence intervals
(cf. equation (4.1)) under small donut asymptotics as a function of donut size for uniform (—),
triangular (−−−) and Epanechnikov (· · ·) kernels.

increases by a factor of

cv1−α

(
b̄(h,d)
ŝ(h,d)

)
ŝ(h, d)

cv1−α

(
b̄(h,0)
ŝ(h,0)

)
ŝ(h, 0)

=

cv1−α

(
1
2

B(S)√
S(c)

√
S(0)

B(0)

)
cv1−α

(
1
2

) ·

√
S(c)

S(0)
+ oP (1). (4.1)

We plot the relative increase in asymptotic length, that is, the first term on the right-hand-
side of the last equation, for different kernel functions in Figure 3.

Remark 2 (Robust Bias Correction). One can show that the “robust bias correction” con-
fidence intervals of Calonico et al. (2014) also maintain correct coverage under small donut
asymptotics, but not under large donut asymptotics. Their length is also substantially
affected by the size of the donut, and they generally tend to be longer than bias-aware
confidence intervals.

5. SPECIFICATION TESTING

5.1. Comparing Donut and Conventional RD Estimates. In this section, we consider a
way of determining whether conventional and donut RD estimates are “significantly” different
in statistical sense. We consider (an appropriately studentized version of) the difference
between the two estimates as a test statistic for the null hypothesis:

H0 : µ
∗(x) = µ(x) for all |x| < d,
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under our maintained conditions that µ∗(x) = µ(x) for all |x| > d and µ∗ ∈ F(M).3 We
denote the difference between conventional and donut RD estimates by

∆̂(h, d) ≡ τ̂(h, d)− τ̂(h, 0) =
n∑

i=1

(wi(h, d)− wi(h, 0))Yi,

and the respective conditional bias and variance as b∆(h, d) = E(τ̂∆(h, d)|Xn) and s2∆(h, d) =

V(τ̂∆(h, d)|Xn), which can be written as

b∆(h, d) =
n∑

i=1

(wi(h, d)− wi(h, 0))µ(Xi) and

s2∆(h, d) =
n∑

i=1

(
wi(h, d)

2 + wi(h, 0)
2 − 2wi(h, d)wi(h, 0)

)
σ2
i ,

respectively. We then prove the new result that under our null hypothesis the conditional
bias term can be bounded in finite samples uniformly over F(M) by

sup
µ∈F(M)

|b∆(h, d)| ≡ b̄∆(h, d) = −M

2

n∑
i=1

(wi(h, d)− wi(h, 0))X
2
i sign(Xi).

On the other hand, a natural estimate of the conditional variance is given by

ŝ2∆(h, d) =
n∑

i=1

(
wi(h, d)

2 + wi(h, 0)
2 − 2wi(h, d)wi(h, 0)

)
σ̂2
i ,

with σ̂2
i again a nearest-neighbor estimate of σ2

i = V(Yi|Xi). A statistical test can then be
based on the t-statistic

t∆ =
∆̂(h, d)

ŝ∆(h, d)
,

which is approximately normal in large samples with unit variance and mean bounded in
absolute value by b̄∆(h, d)/ŝ∆(h, d) under the null hypothesis. This motivates the following
decision rule:

Reject H0 if |t∆| > cv1−α

(
b̄∆(h, d)

ŝ∆(h, d)

)
The following theorem shows that the resulting test has correct size.

3Note that it does not suffice to state the null hypothesis as H0 : τ = τ∗, as some control of µ within the
donut is necessary to derive the properties of the conventional RD estimator.
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Theorem 3. Suppose that (i) either Assumption 1 or 2 holds; (ii) Assumptions 3–5 hold;
and (iii) ŝ2∆(h, d) = s2∆(h, d)(1 + oP (1)). Then, under H0:

lim inf
n→∞

inf
µ∗∈FH(M)

P

(
|t∆| ≥ cv1−α

(
b̄∆(h, d)

ŝ∆(h, d)

))
≤ α.

The formal power properties of this test depend on the asymptotic framework and the
type of (local) alternative under consideration.

Remark 3 (Variance Structure). Note that under small donut asymptotics the variance
that appears in the definition of the t-statistic t∆ satisfies:

ŝ2∆(h, d) =
1

nh
(SK(c) + SK(0)− 2S̃K(c))

(
σ2
+

f+
+

σ2
−

f−

)
+ oP

(
1

nh

)
where SK(c) is as defined above and

S̃K(c) =

∫ 1

c

JK(u, c)JK(u, 0)K(u)2du.

The term S̃K(c) captures the dependence between conventional and donut RD estimates.

5.2. Comparing Donut and “Within Donut” RD Estimates. The test described in the
previous subsection is based on the comparison of two potentially highly correlated quantities.
An obvious alternative for testing our H0, which effectively state evaluating the function µ

inside and outside the donut is consistent with the same treatment effect, is to compare the
donut RD estimate to a conventional RD estimator with bandwidth d. We refer to this latter
estimator τ̂(d, 0) = τ̂(d) as the “within donut” RD estimator, as it only uses data within the
donut hole. That is, one can base a test of H0 on (an appropriately studentized version of)
the difference

Γ̂(h, d) ≡ τ̂(h, d)− τ̂(d, 0) =
n∑

i=1

(wi(h, d)− wi(d, 0))Yi.

We denote the respective conditional bias and variance by bΓ(h, d) = E(Γ̂(h, d)|Xn) and
s2Γ(h, d) = V(Γ̂(h, d)|Xn), which can be written as

bΓ(h, d) =
n∑

i=1

(wi(h, d)− wi(d, 0))µ(Xi) and

s2Γ(h, d) =
n∑

i=1

(
wi(h, d)

2 + wi(d, 0)
2
)
σ2
i ,

13



We then show that we can bound the bias in finite samples uniformly over F(M) under the
null hypothesis by

sup
µ∗∈F(M)

|bΓ(h, d)| = b̄Γ(h, d) = −M

2

n∑
i=1

(wi(h, d)− wi(d, 0))X
2
i sign(Xi).

On the other hand, a natural estimate of the conditional variance is given by

ŝ2Γ(h, d) =
n∑

i=1

(
wi(h, d)

2 + wi(d, 0)
2
)
σ̂2
i ,

with σ̂2
i again a nearest neighbor estimate of σ2

i = V(Yi|Xi). A statistical test can then be
based on the t-statistic. We then define the t-statistic

tΓ =
Γ̂(h, d)

ŝΓ(h, d)
,

which is approximately normal in large samples with unit variance and mean bounded in
absolute value by b̄Γ(h, d)/ŝΓ(h, d) under the null hypothesis. This motivates the following
decision rule:

Reject H0 if |tΓ| > cv1−α

(
b̄Γ(h, d)

ŝΓ(h, d)

)
.

The following theorem shows that the resulting test has correct size.

Theorem 4. Suppose that (i) either Assumption 1 or 2 holds; (ii) Assumptions 3–5 hold;
and (iii) ŝ2Γ(h, d) = s2Γ(h, d)(1 + oP (1)). Then, under H0:

lim inf
n→∞

inf
µ∗∈FH(M)

P

(
|tΓ| ≥ cv1−α

(
b̄Γ(h, d)

ŝΓ(h, d)

))
≤ α.

The formal power properties of this test depend on the asymptotic framework and the
type of (local) alternative under consideration. One can show that this test has better local
power properties against certain natural types of alternatives than the conventional test. The
practical downside is that a large overall sample size is needed to use this test as we need a
sufficient number of data points within the donut in order for the distribution of τ̂(d, 0) to
be well-approximated by a central limit theorem.

14



6. NUMERICAL RESULTS

6.1. Simulations. In this section, we report the results of a simple simulation study. We
generate the running variable as Xi ∼ U(−1, 1) and the outcome as Yi = µL(Xi) + εi, where
εi ∼ N(0, 0.5) independent of Xi and µL(x) = sign(x)x2−Lsign(x)((x−0.1×sign(x))2−0.12×
sign(x))1{|x| < 0.1} for L ∈ {0, 10, . . . , 40}. We define µ∗(x) = µ0(x) so that τ ∗ = 0. The
case L = 0 then corresponds to a setting where donut RD estimation would not be necessary,
whereas for larger values of L we have settings in which the conditional expectation of the
observed data differs more and more extremely from its hypothetical counterpart over the
area (−0.1, 0.1). We then compute conventional and donut RD estimates, corresponding bias-
aware confidence intervals, and our two specification tests with a triangular kernel, d = 0.1

and M = 2.4 We use n = 1, 000 as the sample size and set the number of replications to
10,000. Our results can be summarized as follows.

Point Estimation. Table 1 shows empirical the bias, standard deviation and root mean
squared error (RMSE) of the conventional and the donut RD estimator for the various
values of L. Note that the data-driven bandwidth selector for the conventional RD estimator
chooses an average value of h = 0.49. The results in Table 1 can thus be compared with
theoretical predictions under small donut asymptotics with c ≈ 0.19. Focusing first on the
case L = 0 we see that the ratios of bias and standard deviation (and thus RMSE) between
donut and conventional RD estimators are as predicted by theory. The properties of the
donut RD estimator are then unaffected by L as expected, whereas the bias, but not the
standard deviation, of the conventional RD estimator increases with L. Note however only
with the extreme value L = 40 the RMSE of the donut estimator becomes smaller than that
of the conventional one. This illustrates that extreme deviations from the usual assumptions
are necessary for donut RD estimation to become the dominant point estimator.

Confidence Intervals. Table 2 shows the empirical coverage rates and average lengths of the
conventional and donut RD confidence intervals for the various values of L. Donut CIs have
correct coverage for all values of L as expected, and their average length remains the same
across scenarios as well. Conventional CIs have correct coverage for L = 0, which then
deteriorates for larger values of L. The ratio of average lengths of the two CI types for L = 0

is as predicted by our small donut asymptotic theory.

Specification Testing. Table 3 shows the empirical rejection rates of the two specification
tests we considered for the various values of L and the usual nominal level α = 0.05. Both

4Computation are carried out in R with the package RDHonest, using the latter’s default setting for
bandwidth selection.
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Table 1: Simulation Results: Point Estimation
Bias Std. Dev. RMSE

L Regular Donut Regular Donut Regular Donut

0 0.043 0.115 0.099 0.162 0.108 0.198
10 -0.026 0.115 0.099 0.161 0.102 0.198
20 -0.094 0.115 0.100 0.162 0.137 0.199
30 -0.161 0.117 0.101 0.162 0.190 0.200
40 -0.229 0.116 0.102 0.162 0.251 0.199

Table 2: Simulation Results: Confidence Intervals
CI Coverage CI Length

L Regular Donut Regular Donut

0 0.954 0.948 0.430 0.764
10 0.962 0.949 0.431 0.764
20 0.884 0.946 0.430 0.764
30 0.699 0.946 0.430 0.763
40 0.445 0.947 0.430 0.763

Table 3: Simulation Results: Specification Testing
Rejection Frequency

L ∆̂ Γ̂

0 0.053 0.052
10 0.119 0.152
20 0.232 0.345
30 0.396 0.593
40 0.565 0.803

tests are seen to have correct size if L = 0 and thus the null hypothesis holds. Both tests
also exhibit increasing rejections rates in L as expected. However, the alternative test based
on Γ̂ exhibits strictly greater power than the conventional one based on ∆̂ under for the type
of conditional expectation functions considered here.

6.2. Empirical Application. To be completed.

7. CONCLUSIONS

This preliminary draft of the paper was created as companion for a conference presentation
and shows our main results regarding the theoretical properties of donut RD estimation and
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inference. Further details, proofs and an empirical application will be added soon.
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