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Abstract

This paper presents a test for the validity of control variable approaches to identification

in triangular nonseparable models. Assumptions commonly imposed to justify such methods

include full independence of instruments and disturbances and existence of a reduced form that

is strictly monotonic in a scalar disturbance. We show that if the data has a particular structure,

namely that the distribution of the endogenous variable has a mass point at the lower (or upper)

boundary of its support, validity of the control variable approach implies a continuity condition

on an identified function, which can be tested empirically.
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1. Introduction

Empirical specifications with nonseparable unobservables have become increasingly popular in

econometrics in recent years (e.g. Matzkin, 2003; Chesher, 2003; Imbens and Newey, 2009; Blundell

and Matzkin, 2010). In their most basic form, these models assume that an outcome variable Y is

linked to a covariate X and an unobserved quantity U through the relationship

Y = m1(X,U).

Compared to classical specifications with additively separable disturbances, these types of models

can accommodate very general forms of unobserved heterogeneity. For example, they allow for

heterogeneous responses to policy interventions among observationally identical individuals. Both

economic theory and empirical evidence strongly suggest that such general forms of unobserved

heterogeneity are a common feature of economic data (e.g. Heckman, 2001).

The additional flexibility of these models comes of course at a cost. When the covariate X is

endogenous, the lack of an additively separable disturbance complicates the identification of many

interesting structural parameters. Availability of an instrument, say Z, that is uncorrelated with U

but correlated with X does generally not suffice for identification of meaningful quantities. Instead,

one has to impose additional conditions. One popular approach is based on control variables (e.g.

Blundell and Powell, 2003; Imbens and Newey, 2009). This method entails finding a random

variable R that can be written as an identified function of the data, and is such that X and U are

stochastically independent conditional on R; that is X⊥U |R. This property ensures that changes

in X can be interpreted as causal after conditioning on R, and thus many structural parameters

can be identified from the conditional distribution of Y given X and R.

A control variable arises for example if the model has a triangular structure. This means that

the endogenous variable is assumed to be generated in a first stage as

X = m2(Z, V ),

with Z an instrument and V an unobserved quantity. In a seminal paper, Imbens and Newey

(2009) show that if Z is independent of (U, V ) and m2 depends monotonically on the continuously
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distributed scalar V , then R ≡ FX|Z(X,Z) = FV (V ) is a valid control variable, where FX|Z denotes

the conditional CDF of X given Z and FV denotes the unconditional CDF of V . This is because

in such a model R is a one-to-one transformation of V , and conditional on V all variation in the

endogenous variable X comes from variation in Z.

While this approach to identification is powerful, the postulated triangular specification paired

with the restrictions on first stage unobserved heterogeneity impose substantial limitations for

the underlying economic model. For example, the condition that X depends monotonically on V

implies that individuals with common values of X and Z will react in exactly the same way to

exogenous variation in Z. In many empirical contexts such a behavioral restriction can be difficult

to justify through theoretical considerations alone, and thus its validity might be doubtful. Other

conditions, like the full independence of Z and (U, V ) might be equally questionable in practice.

Unfortunately, one cannot simply adapt established methods for specification testing in models

with additively separable disturbances to settings with nonseparable unobserved heterogeneity.

For example, tests for instrument validity based on overidentifying restrictions, such as those of

Sargan (1958) and Hansen (1982), have no direct analogue in triangular nonseparable models: if

the identifying assumptions mentioned above hold with some vector of instruments Z, there is no

guarantee that that they will also hold (mutatis mutandis) with some subvector of Z.

In this paper, we propose a test of the conditions necessary for justifying a control variable

approach in nonseparable models with a particular additional structure. Specifically, we study the

case where the data generating process is such that the distribution of the endogenous covariate

X has a mass point at some known value, is otherwise continuously distributed, and exerts a

continuous effect on the outcome variable of interest. In most applications, the location of the mass

point coincides with the lower or upper boundary of the support of X. We show that in this case

validity of the control variable approach implies a continuity condition on a certain function at one

particular point, and that this continuity condition can be tested. Validity of the control function

approach can thus be potentially refuted using data and a weak set of maintained assumptions alone.

To the best of our knowledge, our paper is the first to consider this type of testable implications of

identifying assumptions for this type of nonseparable models.
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The idea behind the derivation of our testable implication is related to that of Caetano (2015),

who shows that endogeneity of a covariate X with the above-mentioned properties leads to a

discontinuity in the conditional expectation function of Y given X at the mass point. In this

paper, the starting point for our analysis is the insight that conditioning on a valid control variable

should remove this discontinuity. If not the control variable approach must be invalid; and at

least one of the assumptions that was made to justify it has to be violated. This basic idea can

unfortunately not be implemented directly, because in our setting a valid control variable is only

available for those individuals whose realization of the endogenous variable is different from the

mass point. We address this issue by integrating out the control variable in such a way that it

is no longer necessary to identify it at the mass point, which yields a continuity condition on an

identified function.

We also propose a test statistic that is based on a direct sample analogue of the function whose

continuity we wish to verify. Its computation only involves standard nonparametric regression

techniques and a simple numerical integration step. Deriving its asymptotic properties is a non-

standard problem, as it involves nonparametric regression with estimated data points. We use

recent results in Mammen et al. (2012, 2015) on generated covariates in non- and semiparametric

models to account for this two-stage structure. Through a Monte Carlo study, we show that this

leads to a test with good size and power properties in finite samples.

1.1. Potential Applications. Focusing on settings where the endogenous variable has a mass

point at the lower or upper boundary of its support is clearly restrictive, but such scenarios can

still be found in a wide array of applications. If the endogenous variable is a choice which must

be non-negative, such as the quantity consumed of a particular good, our methods can usually be

applied. One such case is the problem of estimating the effects of smoking during pregnancy on the

baby’s birthweight. Smoking amounts cannot be negative, and a sizable proportion of the pregnant

women do not smoke. The literature on this topic is extensive (see e.g. Kramer, 1987, 1998; Vogler

and Kozlowski, 2002; Almond et al., 2005; Tominey, 2007; Fertig, 2010). Papers using instrumental

variable approaches to address the problem of the endogeneity of smoking include Evans and Ringel

(1999) and Lien and Evans (2005), who use tax variations across locations and time, and Wehby
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et al. (2011), who use genetic markers that predict smoking behavior as instruments for smoking.

This literature generally focuses on linear models, but our approach could be used to investigate

the validity of a triangular nonseparable specification in such a context.

Another interesting class of examples are studies of the effects of labor supply, expressed as

“hours of work,” on different outcomes. See Blundell and MaCurdy (1999) for a survey on the

extensive literature on this topic. Approaches based on instrumental variables include, for example,

Heckman and MaCurdy (1980)’s study of the effect of female labor supply on female wages, which

uses the wages of the husband or other non-female generated sources of income as instrument for

female hours worked. Another example is Connelly and Kimmel (2009), who study of the effect of

labor supply on time spent in childcare, using age and education squared, as well as spouse’s age and

education as instruments for hours of work. A third example can be found in Blau and Grossberg

(1992), who study the effect of maternal labor supply on the child’s cognitive development, using

supply side determinants of maternal labor supply, such as predicted wage, as instruments for the

maternal hours worked. Hours of work must of course be non-negative, and a large part of the

population supply exactly zero hours, and thus our methods can be used to test the validity of a

control function approach in these setups.

In other settings the presence of mass points is due to certain legal restrictions. One example

is the variable “schooling.” Due to minimum attendance laws (and additionally minimum working

age laws), students are forced to remain in school until a certain age threshold is reached. The

well known literature on the returns to schooling (see Card (1999)) is concerned with endogeneity

of “schooling.” Several instrumental variables have been used, such as for example Card (1995)’s

proximity to college. We can therefore test the validity of a control function based approach in this

setting.

Another variable which is also constrained by law is wage, which must be equal to or larger than

a pre-established quantity for all legal employment. Examples of problems and instruments include

Stewart and Swaffield (1997), which studies the effect of wages on the desired hours of work, and

uses as instrument for wages a combination of variables including years of education and the male

age-specific regional unemployment rate. Iwata and Tamada (2014) examines the effect of wages
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on the commuting time of married women, also using a combination of variables as instrument for

wages, including the average market wage for women and the age of the respondent. Lydon and

Chevalier (2002) investigates the effect of wages on job satisfaction, and uses as instrument for the

person’s wages their partner’s characteristics, such as wage and age. Our test can be applied to

test the validity of a control function approach in such problems.

1.2. Related Literature. Our paper contributes to an extensive literature on identification

in nonlinear models with endogeneity. Control variable methods for non- and semi-parametric

triangular models are studied by Newey et al. (1999), Blundell and Powell (2003, 2004), Imbens

(2007), Imbens and Newey (2009), Rothe (2009) and Kasy (2011), among others. Instrumental

variable (IV) approaches to identification in nonparametric models with additive disturbances are

studied in Newey and Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007), or Darolles

et al. (2011). Chernozhukov and Hansen (2005), Chernozhukov et al. (2007), Torgovitsky (2015)

and D’Haultfoeuille and Février (2011) consider IV methods in nonseparable models, but with

restrictions on the dimension of the disturbances. Canay et al. (2013) show that the completeness

condition, which plays a central role for identification in nonparametric IV approaches, is generally

not testable.

1.3. Plan of the Paper. The remainder of the paper is structured as follows. In Section

2, we introduce the model and the identification approach. In Section 3, we derive our testable

implication, and discuss its strength and limitations. In Section 4, we propose a test statistic and

study its asymptotic properties. Section 5 contains the results of a Monte Carlo study. Section 6

concludes. Proofs and some extension are collected in the appendix.

2. Model and Identification

2.1. Model. We consider a triangular system of equations as the data generating process similar

to the one investigated by Imbens and Newey (2009), focusing on systems that only contain a single

potentially endogenous covariate, and no additional exogenous ones.1 Our setup differs from others

1Systems with multiple endogenous covariates would be rather cumbersome to study, although it would be possible
in principle. We do not explore this possibility further due to the high prevalence of systems with only one endogenous
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considered in the literature in that we assume that the distribution of the endogenous covariate has

a mass point at some known value, which, again for simplicity, we take to be the lower boundary

of its support. Specifically, our model is given by

Y = m1(X,U), (2.1)

X = max{0,m2(Z, V )} (2.2)

where Y is the outcome of interest, X is a scalar and potentially endogenous covariate, and U and

V denote unobserved heterogeneity.2 We also assume that the data generating process is such that

0 < P (X∗ ≤ 0|Z) < 1 with probability 1, where X∗ = m2(Z, V ). (2.3)

This means that the conditional distribution of X given Z has an actual mass point at 0, but is

not degenerate.

The interpretation of negative realizations of the semi-latent variable X∗ depends on the respec-

tive empirical setting. Suppose for instance that X denotes average daily cigarette consumption.

Then individuals with a large negative realization of X∗ can be thought of as “very health conscious

types” that would need to receive substantial compensation in utility-equivalent units in order to

smoke even a single cigarette per day, whereas individuals with X∗ close to zero are those that are

almost indifferent between smoking and not smoking. When X denotes hourly wages in excess of

the legal minimum, a negative value of X∗ can be thought of as the normalized market wage an

individual would earn in the absence of minimum wage laws. Similar arguments can be made in

other empirical contexts.

Finally, we assume that the average of the structural function m1 satisfies a weak continuity

variable in applications. If there are additional covariates present in an application, the following analysis can be
understood as being conditional on these covariates. We return to the issue of how to incorporate covariates into our
analysis below.

2Taking the lower bound of the support of X to be equal to zero is without loss of generality. If the threshold is
equal to some other known constant c, the above representation can simply be achieved by subtracting c from both
X and m2(Z, V ). Similarly, we could allow for a known upper bound on the support of X instead of a lower one. It
would also be possible to consider settings with a mass point in the interior of the support, by postulating models
like (2.1)–(2.2) separately for the data points located above and below the mass point, respectively.
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property:

lim
x↓0

E(m1(x,U)) = E(m1(0, U)). (2.4)

Continuity of the average structural function seems to be a reasonable assumption for many, al-

though certainly not all, empirical settings.

Introducing some notation that we will use repeatedly in the following, we put R = FX|Z(X;Z)

and R∗ = FX∗|Z(X
∗;Z). These two quantities denote an individual’s rank in the conditional

distribution of X and its latent counterpart X∗ given Z. Furthermore, for generic random variables

A and B, we will write S(A) to denote the support of A, and S(A,B|A > 0) ≡ {(a, b) : (a, b) ∈

S(A,B) and a > 0} for the intersection of the support of (A,B) with R+ × R.

2.2. Identification. The model that we study in this paper reduces to the one considered by

Imbens and Newey (2009) if equation (2.2) would be changed to X = m2(Z, V ), and the (then

redundant) conditions (2.3)–(2.4) would be dropped. Imbens and Newey (2009) show that in

their setting a large class of interesting structural parameters can be identified through control

variable arguments. The purpose of this subsection is simply to show that the same is true in our

model (2.1)–(2.4) under very similar conditions. To be specific, we focus on identification of the

Average Structural Function (ASF), defined by Blundell and Powell (2003) as

a(x) = E(m1(x,U)),

but the same arguments apply to a broader class of structural objects. Note that the ASF describes

the average outcome of an individual whose covariate X is exogenously fixed at x. We consider the

following identifying assumptions, which are analogous to those in Imbens and Newey (2009).

Assumption 1. The model in (2.1)–(2.4) satisfies the following restrictions:

(i) Z and (U, V ) are stochastically independent.

(ii) V is scalar and continuously distributed with a strictly increasing CDF.

(iii) The function v 7→ m2(Z, v) is strictly increasing with probability 1.
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Assumption 2. S(R|X = x) = [0, 1] for all x ∈ S(X|X > 0).

Part (i) requires full independence between the instruments and the unobserved heterogeneity,

whereas parts (ii)–(iii) imply that within the subpopulation that has X > 0, individuals with the

same realization of the vector (X,Z) are also identical in terms of the unobserved heterogeneity V .

Assumption 2 is a generalization of the usual rank condition in traditional IV models. It requires

the function z 7→ m2(z, V ) to exhibit a sufficient amount of variation over the support of Z. This

condition is strong and arguably not satisfied in many settings. On the other hand, it only involves

observable quantities, and thus its validity can be investigated empirically by studying the range

of a suitable estimate of R. Moreover, Imbens and Newey (2009) show that if this assumption fails

many structural quantities of interest remain partially identified. Taken together, these assumptions

imply that the ASF is identified:

Proposition 1. Suppose that Assumptions 1 and 2 hold. Then

a(x) =


∫ 1
0 E(Y |X = x,R = r)dr if x > 0,

limx↓0
∫ 1
0 E(Y |X = x,R = r)dr if x = 0,

and thus the ASF a(x) is identified for all x ∈ S(X).

3. A Discontinuity Test for Identification

3.1. Testing Problem. Our interest in this paper is in testing the validity of the assumptions

that are necessary to justify a control variable approach as described in Section 2.2. Specifically,

the pair of hypotheses that we would like to test is given by

H0: Assumption 1 holds vs. H1: Assumption 1 is violated; (3.1)

under the maintained assumption that conditions (2.1)–(2.4) hold, and that

S(R|X = x) = [0, 1] for all x ∈ S(X|0 < X < δ) (3.2)

for some δ > 0. While still restrictive, condition (3.2) is weaker than Assumption 2, and thus

maintaining it seems reasonable in our setting. Equations (2.1)–(2.3) are really just notation, and
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do not impose any restrictions on the data generating process other than a lower bound on the

support of X and strictly positive probability mass at that point. The continuity condition (2.4)

can usually be well-justified through subject knowledge. This leaves Assumption 1 as the remaining

restriction of the model structure whose credibility could be uncertain in an empirical application.

3.2. A Testable Implication. To motivate our approach, suppose for a moment that the latent

rank variable R∗ = FX∗|Z(X
∗;Z) was observable, and define

µ(x, r) = E(Y |X = x,R∗ = r),

Note that this definition involves observable quantities only as R∗ is assumed to be observable for

the moment, and is thus meaningful under both the null hypothesis and the alternative. Using the

structure of the model, it is then easily seen that

µ(x, r) =


E(Y |X∗ = x,R∗ = r) if x > 0,

E(Y |X∗ ≤ x,R∗ = r) if x = 0.

Since the conditioning sets on the right-hand side of the previous equation differ, one would generally

expect the function µ(x, r) to be discontinuous at x = 0 for at least some values r ∈ S(R∗). However,

we also know from the proof of Proposition 1 that, if Assumption 1 holds, the latent rank variable

R∗ is a valid control variable satisfying U⊥X|R∗, and thus

µ(x, r) = E(m1(x,U)|R∗ = r)

in this case. Since R∗ = FV (V ), it then follows from the continuity condition (2.4) that under the

null hypothesis that Assumption 1 holds, the function x 7→ µ(x,R∗) must be right-continuous at

x = 0 with probability 1. On the other hand, under the alternative that Assumption 1 is violated,

there is no reason to expect that U⊥X|R∗, and thus x 7→ µ(x,R∗) should generally be discontinuous

at x = 0 with positive probability.3

In our model, we only observe R but not R∗. While these two terms coincide in the subpopu-

3As we discuss below, there might still be certain alternatives under which no discontinuities appear, but we argue
that those mostly correspond to pathological cases one is unlike to encounter in practice.
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lation with X > 0, and thus µ(x, r) = E(Y |X = x,R = r) for x > 0, it is easy to see that we can

only deduce that 0 ≤ R∗ ≤ R if X = 0. This means that while we are able to learn limx↓0 µ(x, r),

µ(0, r) is not point identified, and thus we cannot check directly for the presence of a discontinuity.

To address this problem, we consider the quantity

∆ =

∫
lim
x↓0

E(Y |X = x,R = r)dΓ(r)− E(Y |X = 0), (3.3)

where

Γ(r) =
FU [0,1](r)− P (R ≤ r|X > 0)P (X > 0)

P (X = 0)
, (3.4)

and FU [0,1] denotes the CDF of a uniform distribution on the unit interval. The support condi-

tion (3.2) ensures that the integral in (3.3) is well defined, but it is stronger than necessary for that

purpose. The following theorem shows that under the null hypothesis ∆ must be equal to zero.

Theorem 1 (Main Implication). The term ∆ defined in (3.3) is a well-defined functional of the

distribution of (Y,X,Z); and a necessary condition for H0 to be true is that ∆ = 0.

Note that ∆ = 0 is not sufficient for the null hypothesis. This means that finding that ∆ ̸= 0

is evidence of a violation of H0, but finding that ∆ = 0 is compatible with both the null and some

elements of the alternative. We elaborate more on this point below. To see why the theorem is

true, first note that all terms on the right-hand side of equation (3.3) can be written as a known

transformation of the joint distribution of (Y,X,Z), and thus ∆ is well-defined under both the

null hypothesis and the alternative. Next, note that under H0 the function Γ(r) = FR∗|X(r; 0), the

conditional CDF of R∗ given X = 0. This is because R∗ ∼ U [0, 1] by construction, R∗ = R in the

subpopulation with X > 0, and

FR∗(r) = P (R∗ ≤ r|X > 0)P (X > 0) + P (R∗ ≤ r|X = 0)P (X = 0)

by the law of total probability. It follows that under H0 we have that

∆ =

∫ (
lim
x↓0

µ(x, r)− µ(0, r)

)
dFR∗|X(r; 0),

is equal to the size of the discontinuity of the function x 7→
∫
E(Y |X = x,R∗ = r)dFR∗|X(r; 0) at
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x = 0; which is exactly equal to zero under H0. Our approach to use weighting with respect to the

conditional distribution of R∗ given X = 0 circumvents the need to identify µ(0, r). Note that we

identify this conditional distribution even though realizations of R∗ are never observed if X = 0.

3.3. Detectable Alternatives. Our approach is generally able to detect violations of each of

the three components of Assumption 1, and can thus be a powerful tool for empirical practice. We

illustrate this point through Monte Carlo experiments below. However, Theorem 1 also implies

that there might be alternatives that our approach is unable to detect. This fact should not be

understood as a fundamental flaw of our method. Instead, it should be seen as an indication of

the difficulty to derive testable implications from a condition like Assumption 1 in such a general

setting. To provide some further insights into this issue, let us consider the function

∆̄(r) = lim
x↓0

E(Y |X = x,R∗ = r)− E(Y |X = 0, R∗ = r).

With this notation, we can categorize the settings in which ∆ = 0 even though Assumption 1 is

violated into two cases:

(i) ∆̄(r) ̸= 0, but
∫
∆̄(r)dFR∗|X(r; 0) = 0,

(ii) ∆̄(r) = 0 for all r even though H1 is true.

In case (i), the joint distribution of (Y,X,R∗) is such that the function r 7→ ∆̄(r) takes on

both positive and negative values in such a way that it incidentally integrates to zero with respect

to FR∗|X(r; 0). We are not aware of any interpretable restrictions on the primitives of the model

under which this would be the case, but a numerical example below shows that it is conceivable

in principle. We think of this case as a pathological one, and would argue that it is unlikely to be

encountered in empirical applications.

Case (ii) is more interesting, as it is possible to give more interpretable conditions under which

it might occur. For example, since our approach is based on comparing the subpopulation with

X = 0 to the one with small positive realizations of X, it is unable to detect violations of H0 which

only affect those individuals with X > δ for some δ > 0. That is, if the data are generated under a

fixed alternative which is such that Assumption 1 only holds within the subpopulation with X < δ
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for some δ > 0, then ∆̄(r) ≡ 0, and our approach would not be able to detect the violation. In

this case, the control variable approach would for example correctly identify the Average Structural

Function E(m1(x, U)) for x < δ, but not for x ≥ δ.

4. A Test Statistic and its Theoretical Properties

4.1. Estimation of ∆. The main idea behind the construction of our test statistic is to take a

sample analogue ∆̂ of ∆, and to reject the null hypothesis if this difference is “too large” in some

appropriate sense. We propose to use

∆̂ =

∫
µ̂+(r)dΓ̂(r)− µ̂, (4.1)

with µ̂+(v) and µ̂ suitable estimates of limx↓0 E(Y |X = x,R = v) and E(Y |X = 0), respectively,

and Γ̂(r) a suitable estimate of the function Γ(r). We assume that the data are an i.i.d. sample

{(Yi, Xi, Zi)}ni=1 of size n from the distribution of (Y,X,Z).

In order to compute the components that make up the definition of ∆̂, we first estimate the

conditional distribution function FX|Z of X given Z by local linear estimation (Fan and Gijbels,

1996):

F̂X|Z(x, z) = e⊤1,dz argmin
(a1,a⊤2 )

n∑
i=1

(
I{Xi ≤ x} − a1 − a⊤2 (Zi − z)

)2
Kg(Zi − z). (4.2)

Here Kg(z) =
∏dz

j=1K(zj/g)/g is a dz-dimensional product kernel built from the univariate kernel

function K, g is a one-dimensional bandwidth that tends to zero as the sample size n tends to

infinity, and e1,dz = (1, 0, . . . , 0)⊤ denotes the first unit (dz + 1)-vector. In a second step, we

then use this estimated CDF to define estimates {R̂i}ni=1 of the realizations of the unobserved but

identified random variable R = FX|Z(X;Z) as

R̂i = F̂X|Z(Xi, Zi) for i = 1, . . . n. (4.3)

Third, we estimate the function Γ(r) defined in (3.4) by

Γ̂(r) =
FU [0,1](r)−

∑n
i=1 I{R̂i ≤ v,Xi > 0}/n∑n

i=1 I{Xi = 0}/n
,
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where FU [0,1] is the CDF of the standard uniform distribution. Fourth, we define the estimate µ̂+(r)

of the function limx↓0 E(Y |X = x,R = r) as

µ̂+(r) = e⊤1,2 argmin
(a1,a⊤2 )

n∑
i=1

(
Yi − a1 − a⊤2 (Xi, R̂i − r)

)2
Kh(Xi, R̂i − r)I{Xi > 0},

where Kh(x, r) = K(x/h)K(r/h)/h2 is a bivariate product kernel built from the univariate kernel

function K, h is a one-dimensional bandwidth that tends to zero as the sample size n tends to

infinity, and e1,2 = (1, 0, 0)⊤. Finally, we define the estimate µ̂ of E(Y |X = 0) as a sample average

of the observed outcomes Yi among those observations with Xi = 0:

µ̂ =

∑n
i=1 YiI{Xi = 0}∑n
i=1 I{Xi = 0}

.

The statistic ∆̂ is then constructed as described in (4.1). Note that because of the particular

structure of the estimate Γ̂, the expression given there simplifies to

∆̂ =
1∑n

i=1 I{Xi = 0}/n

(∫ 1

0
µ̂+(r)dr − 1

n

n∑
i=1

µ̂+(R̂i)I{Xi > 0}

)
− µ̂.

The computation of ∆̂ is thus straightforward, as it only involves calculating sample averages and

a one-dimensional numerical integration problem.

4.2. Asymptotic Properties of ∆̂. Deriving the theoretical properties of ∆̂ is a non-standard

problem because its construction involves a nonparametric regression on the estimated data points

{R̂i}ni=1. We address this issue by using recent results in Mammen et al. (2012, 2015) on non-

parametric regression with generated covariates. Making use of these results requires the following

assumption.

Assumption 3. We assume that the data are an i.i.d. sample {(Yi, Xi, Zi)}ni=1 of size n from the

distribution of (Y,X,Z), and that the following conditions hold.

(i) The random vector Z is continuously distributed with support SZ = S(Z) ⊂ RdZ . The cor-

responding density function fZ(·) is continuously differentiable, bounded, and bounded away

from zero on SZ .
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(ii) The conditional CDF FX|Z(x, z) of X given Z is twice continuously differentiable with respect

to its second argument on SZ .

(iii) The random vector (X,R) is continuously distributed conditional on X > 0 with support

SXR|X>0 = S(X,R|X > 0). The corresponding conditional density function fXR|X>0(·) is

continuously differentiable, bounded, and bounded away from zero on the compact set Sδ =

{(x, v) : (x, v) ∈ SXR|X>0 and x ≤ δ} with δ > 0 as in (3.2).

(iv) The conditional expectation function E(Y |X = x,R = r) is twice continuously differentiable

in x on Sδ.

(v) There exist a constant λ > 0 and some constant l > 0 small enough such that the residuals

ε = Y − E(Y |X,R∗) satisfy the inequality E(exp(l|ε|I{X > 0})|X,R) ≤ λ.

(vi) The kernel function K is twice continuously differentiable and satisfies the following condi-

tions:
∫
K(u)du = 1,

∫
uK(u)du = 0, and K(u) = 0 for values of u not contained in some

compact interval, say [−1, 1].

(vii) The bandwidths g and h satisfy the following conditions as n → ∞: (a) nh5 → 0, (b)

nh3/ log(n) → ∞, (c) nhg4 → 0 and (d) h2(ngdz/ log(n) + g−4) → ∞.

Assumption 3 collects conditions that are largely common in the literature on nonparametric

regression. Parts (i) and (iii) ensure that the estimates F̂X|ZW (x, z) and µ̂+(r) are stable over their

respective range of evaluation. Parts (ii) and (iv) are smoothness conditions used to control the

magnitude of certain bias terms. Assuming subexponential tails of ε conditional on (X,R) in the

subpopulation with X > 0 in part (v) is necessary to apply certain results from Mammen et al.

(2012, 2015) in our proofs. Part (vi) describes a standard kernel function with compact support.

At the expense of technically more involved arguments, this part could be relaxed to also allow

for certain kernels with unbounded support. In particular, the Gaussian kernel would be allowed.

Finally, part (vii) collects a number of restrictions on the bandwidths that are partly standard, and

partly sufficient for certain “high-level” conditions in Mammen et al. (2012, 2015). We derive the
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limiting distribution of ∆̂ under Assumption 3. To state the result, we define

f+
R|X(r, 0) = lim

x↓0
fR|X(r, x) and f+

X (0) = lim
x↓0

fX(x),

let γ(r) = ∂Γ(r)/∂r, and put

σ2
+ = lim

x↓0
Var

(
ε · γ(R)

f+
R|X(R, 0)

∣∣∣∣∣X = x

)
.

where ε = Y − E(Y |X,R∗) as in Assumption 3(v). Note that under the null hypothesis σ2
+ can be

expressed in the following, somewhat more intuitive form:

σ2
+ = lim

x↓0
Var

(
ε ·

fV |X(V, 0)

f+
V |X(V, 0)

∣∣∣∣∣X = x

)
.

Also, for j ∈ {0, 1, 2} we define the constants

κj =

∫ ∞

0
xjK(x)dx and λj =

∫ ∞

0
xjK(x)2dx,

which depend on the kernel function K only, and put

C =
κ22λ0 − 2κ1κ2λ1 + κ21λ2

(κ2κ0 − κ21)
2

,

With this notation, the following result shows that distribution of ∆̂ is asymptotically normal, with

the rate of convergence being the same as that of a standard one-dimensional kernel smoother.

Theorem 2. Suppose that Assumption 3 holds. Then

√
nh
(
∆̂−∆

)
d−→ N

(
0, C ·

σ2
+

f+
X (0)

)
.

4.3. Test Statistic and Critical Values. Given the result in Theorem 2, a natural test statistic

for the testing problem in (3.1) is given by a simple t-statistic of the form

Tn =

√
nh · ∆̂
ρ̂

,

where ρ̂2 is some consistent estimate of the asymptotic variance ρ2 = C · σ2
+/f

+
X (0) of ∆̂. We

discuss several possibilities for obtaining such a variance estimate below. Under the conditions of

Theorem 2, this test statistic follows a standard normal distribution under the null hypothesis in
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large samples, and diverges under any fixed alternative which is such that ∆ ̸= 0. The testing

decision is thus to reject H0 at the nominal level α ∈ (0, 1) if |Tn| > cα, where cα = Φ−1(1− α/2)

denotes the (1 − α/2)-quantile of the standard normal distribution. The following result formally

shows the validity of such an approach.

Theorem 3. If Assumption 3 holds, and ρ̂2
p→ ρ2, we have the following results:

(i) Under the null hypothesis, i.e. if ∆ = 0, limn→∞ P (|Tn| > cα) = α.

(ii) Under any fixed alternative that implies ∆ ̸= 0, limn→∞ P (|Tn| > cα) = 1.

(iii) Under any local alternative that implies ∆ = δ/
√
nh, limn→∞ P (|Tn| > cα) = 1 − Ξθ(cα),

where Ξθ is the CDF of the absolute value of a normal random variable with mean θ = δ/ρ

and variance 1.

Since Theorem 3 holds for any consistent estimator of ρ2, the only remaining issue is to find

one such estimator that is feasible to compute in the context of an empirical application. One

possible approach would be to develop a direct sample-analogue estimator using boundary-corrected

nonparametric estimates of the various components of ρ2. However, such a procedure, which we

explicitly describe in Section A.4, can be unattractive in practice because it requires choosing

several additional smoothing parameters. In some preliminary simulations that we conducted, the

performance of the resulting test was indeed quite sensitive in this regard. We therefore recommend

the use of a nonparametric bootstrap variance estimator. Such a procedure is computationally

more expensive, but straightforward from a practical point of view. The estimator is obtained as

follows. Let {(Y ∗
i , X

∗
i , Z

∗
i )}ni=1 be a bootstrap sample drawn with replacement from the observed

data {(Yi, Xi, Zi)}ni=1, and let ∆̂∗ be an estimate of ∆ computed exactly as described above but

using the bootstrap sample. Then ρ̂2 = E∗((∆̂∗ − ∆̂)2), where E∗ denotes the expectation with

respect to bootstrap sampling. While it is difficult to give interpretable low-level conditions for the

consistency of such an estimator, bootstrap variance estimation is widely used in practice due to

its generally good behavior in simulations.
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4.4. Covariates. In many empirical applications, researchers might want to incorporate addi-

tional exogenous covariates into their model. In principle, it would be straightforward to introduce

such covariates, say W , into our setting in a fully nonparametric fashion, and to consider a model

of the form

Y = m1(X,W,U)

X = max{0,m2(Z,W, V )}.

Under an appropriate exogeneity condition of W , our identification analysis from above can simply

be applied to this model conditional on the value of W . In most realistic applications, which

typically use several covariates, a fully nonparametric implementation of our test is unlikely to have

good finite sample properties due to the curse of dimensionality. For this reason, we expect that

applied researchers will generally want to impose some semiparametric restrictions when working

with additional covariates. There is of course a vast number of types of restrictions that can be used

reduce the effective dimensionality of the problem, and their appropriateness depends critically on

the details of the respective application. As it is therefore impossible to present an exhaustive

discussion, we focus here on the following “partially linear” specification.

Y = m1(X,U) +W ′θ1, (4.4)

X = max{0,m2(Z, V ) +W ′θ2} (4.5)

This specification has the advantage that is seems appropriate for a wide range of applications, and

that within this framework including covariates into our existing testing procedure is rather simple

from a technical point of view.

To describe how this can be done, suppose that Assumption 1(i) is replaced with the condition

that (Z,W ) and (U, V ) are stochastically independent, define X̃i = Xi−W ′θ2 and Ỹi = Yi−W ′θ1, let

FX̃|Z denote the CDF of X̃ given Z, and redefine Ri = FX̃|Z(X̃i, Zi). FX̃|Z(t|z) = FV (m
−1
2 (z, t))[1−

FW ′θ2|Z(−t|z)] is strictly monotone in t, where m−1
2 (z, t) denotes the inverse of m2 with respect to

its second argument. Moreover, X̃ = m2(Z, V )if X > 0, and thus distribution of U conditional on

X = x and R = r is the same as the the distribution of U conditional on R = r when x > 0,.
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In our specification the conditional expectation E(X|Z,W ) = E(X|Z,W ′θ2) has an index struc-

ture, and thus a
√
n-consistent estimator θ̂2 of θ2 can be obtained under standard regularity con-

ditions by for example using the method of Ichimura and Lee (1991). We can therefore define an

estimate X̂i = Xi−W ′
i θ̂2 of X̃i, and an estimate R̂i = F̂

X̂|Z(X̂i, Zi) of Ri, where F̂X̂|Z is computed

as described in (4.2), but with X̂i replacing Xi.

It is also easy to see that E(Y |X = x,W = w,R = r,X > 0) = E(m1(x,U)|R = r,X >

0) + w′θ1 is the sum of a smooth function in (x, r) and a linear function in w. Hence a
√
n-

consistent estimator θ̂1 of θ1 can obtained under standard regularity conditions by for example

using the method of Robinson (1988) in the subsample with X > 0; that is, by running a linear

regression of Y − Ê(Y |X, R̂) on W − Ê(W |X, R̂) in the subsample with X > 0, where Ê(·) denotes

a nonparametrically estimated conditional expectation function. We can then define an estimate

Ŷi = Yi − W ′
i θ̂1 of Ỹi, and compute our test statistic as before, but with Ŷi replacing Yi. Since

(θ̂1, θ̂2) converges with a parametric rate, the first order asymptotic properties of this test statistic

will be the same as that of an infeasible one which uses the actual realizations of X̃i and Ỹi instead

of Xi and Yi.

5. Some Monte Carlo Evidence

To gain further insights into the properties of our testing procedure, we conduct as a series of Monte

Carlo experiments. In these simulations, the distribution of the observable quantities (Y,X,Z) is

determined by the following class of data generating processes (DGPs):

Y = U1 + U2X,

X = max{0, 1 + V1 +A · Z}.

Here we define Uj = (V1 + βV 2
2 /

√
2 + γZ + ηj)/

√
1 + β2 + γ2 for j = 1, 2, and A = 2 · (1 +

αV1 + βV 2
2 /

√
2)/
√

1 + α2 + β2 with (Z, V1, V2, η1, η2) a vector of independent, standard normally

distributed random variables. The coefficients α, β and γ are real-valued and are varied for our

Monte Carlo experiments. Note that for α = β = γ = 0 the DGP corresponds to a linear random

coefficient model in the outcome equation and a standard censored linear model in the first stage
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equation, and thus clearly satisfies H0. If α ̸= 0 the monotonicity condition in Assumption 1(iii)

fails, for γ ̸= 0 the independence condition Assumption 1(i) is violated, and when β ̸= 0 the first

stage no longer only contains a scalar unobservable random variable, and thus Assumption 1(ii)

does not hold. For our Monte Carlo study, we specifically consider the following three scenarios:

• DGP1: α = 0, .2, .4 . . . , 2 and β = γ = 0.

• DGP2: β = 0, .2, .4, . . . , 2 and α = γ = 0.

• DGP3: γ = 0, .2, .4, . . . , 2 and α = β = 0.

We then apply our test as described in Section 4.3 to samples of size n = 500 from each of these

DGPs. The number of replications is set to 10,000. We consider a bootstrap-based estimator of the

asymptotic variance using B = 500 bootstrap samples. The bandwidths are set to h = .5·SD ·n−1/4

and g = 1.5 ·SD ·n−1/4, where SD is the empirical standard deviation of the respective covariate.4

Table 1: Simulation Results.
Parameter DGP1 (varying α) DGP2 (varying β) DGP3 (varying γ)
(α/β/γ) ∆ P(rej. H0) ∆ P(rej. H0) ∆ P(rej. H0)

0.0 0.000 0.045 0.000 0.045 0.000 0.045
0.2 0.005 0.054 -0.056 0.052 0.128 0.082
0.4 0.044 0.067 -0.128 0.103 0.250 0.202
0.6 -0.021 0.083 -0.191 0.179 0.359 0.398
0.8 -0.195 0.180 -0.259 0.274 0.437 0.632
1.0 -0.420 0.341 -0.301 0.399 0.494 0.803
1.2 -0.735 0.710 -0.345 0.470 0.540 0.920
1.4 -0.507 0.649 -0.371 0.556 0.573 0.972
1.6 -0.411 0.422 -0.396 0.622 0.601 0.992
1.8 -0.382 0.269 -0.416 0.669 0.622 0.994
2.0 -0.367 0.209 -0.442 0.704 0.634 1.000

In Table 1, we report the empirical rejection probabilities of our test under the various DGPs

at the usual nominal significance level of 5%. We also numerically compute the population value

of ∆ for each DGP to gain some additional insights into the behavior of our procedure. The table

shows that when the null hypothesis is true (that is, if α = β = γ = 0), the rejection probability of

4We also experimented with various multiples of these bandwidths and found the results to be reasonable robust
with respect to that choice.
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our test is close to the nominal level. It also shows that our test has power against all three types

of violations of the null hypothesis.

Table 1 also illustrates one of the consequences of the fact that that we are only testing a

necessary condition for the null hypothesis to be true. Note that within each of the three types

of DGPs the value of the varying parameter can be interpreted as a measure of distance from the

null hypothesis. However, this does not mean that the value of ∆ has to be monotone in the value

of that parameter. While this turns out to be the case for DGP2 and DGP3, Table 1 shows that

under DGP1 the value of ∆ varies non-monotonically with α. Therefore some alternatives that are

“far” away from the null hypothesis are more difficult to reject for our test than some others that

are “closer”.

6. Conclusions

In this paper, we have derived a testable implication of the validity of the control variable approach

to identification in triangular nonseparable models with endogeneity. To the best of our knowledge,

this is the the first to point out a non-trivial testable implication of this particular type of hypothesis.

Our approach requires a special data structure, namely that the endogenous covariate has a mass

point at the lower (or upper) boundary of its support, and is otherwise continuously distributed.

While this setup is certainly restrictive, we argue that the idea is still applicable in a wide range of

empirical settings. We propose a test statistic that is easy to compute, show that it is asymptotically

normal and derive an explicit formula for its asymptotic variance, which can be estimated to obtain

critical values.

A. Appendix

A.1. Proof of Proposition 1. The result is a minor extension of Theorem 1 in Imbens and Newey (2009).

Let R∗ = FX∗|Z(X
∗;Z), and note that it follows from Imbens and Newey (2009) that under Assumption 1

we have that R∗ = FV (V ), and that U ⊥ X|R∗. Since R∗ ∼ U [0, 1] by construction, we also have that

a(x) =
∫ 1

0
E(m1(x,U)|R∗ = r)dr. Identification of the ASF for x > 0 then follows since Assumption 2

ensures that the integral is well defined. The continuity condition (2.4) then implies identification of the

ASF at x = 0, because a(0) = limx↓0 a(x).
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A.2. Proof of Theorem 1. Equations (3.3) and (3.4) show that the definition of ∆ only involves

observable quantities. Now let ∆̄(r) = limx↓0 E(Y |X = x,R∗ = r) − E(Y |X = 0, R∗ = r). Then it follows

from the above arguments that P (∆̄(R∗) = 0) = 1 under H0 and P (∆̄(R∗) = 0) ≤ 1 under H1. Since

∆ =
∫
∆̄(r)dFR∗|X(r; 0) this implies the statement of the theorem.

A.3. Proof of Theorem 2. The result in Theorem 2 follows directly from the three axillary results in

Lemma 1–3 below. The first of these three findings gives a bound on the uniform rate of consistency of the

estimated function Γ̂(·).

Lemma 1. Suppose that the conditions of Theorem 2 hold. Then

sup
r∈S(R|X=0)

|Γ̂(r)− Γ(r)| = OP (n
−1/2) +O(g2).

Proof. Up to terms that are clearly OP (n
−1/2), the estimate Γ̂(·) is equal to a continuous and deterministic

transformation of the empirical distribution function of the estimates {R̂i}ni=1 in the subset of the sample

with Xi > 0. The result then follows from arguments analogous to those in Akritas and Van Keilegom

(2001).

To state our next result, we define an infeasible estimator of µ+(r) = limx↓0 E(Y |X = x,R = r) that

uses the actual realizations of Ri = FX|Z(Xi, Zi) instead of the corresponding estimated values R̂i. The

corresponding estimator is denoted by µ̃+
Y |X,R(0, r). We also define an infeasible version of our test statistic

which uses the population values Γ(·) and E(Y |X = 0) instead of their estimates, and replaces µ̂+(r) with

its infeasible version µ̃+(r):

∆̃ =

∫
µ̃+(r)dΓ(r)− E(Y |X = 0).

The following lemma derives the asymptotic properties of the infeasible test statistic ∆̃.

Lemma 2. Suppose that the conditions of Theorem 2 hold. Then

√
nh(∆̃−∆)

d→ N

(
0, C ·

σ2
+(0)

f+
X(0)

)
as n → ∞.

22



Proof. To show this result, we first introduce the additional notation that:

Li(r) = (1, Xj/h, (Ri − v)/h)⊤ · I{Xi > 0},

Mn(r) =
1

n

n∑
i=1

Li(r)Li(r)
⊤Kh(Xi, Ri − r),

Nn(r) = E(Li(r)Li(r)
⊤Kh(Xi, Ri − r)).

With this notation, the local linear estimator µ̃+(r) can be written as

µ̃+(r) =
1

n

n∑
i=1

e⊤1 Mn(r)
−1Li(r)Kh(Xi, Ri − r)Yi.

It also follows from straightforward calculations that the term Nn(r) satisfies

Nn(r) = A lim
x↓0

fRX(r, x) + o(1) = Af+
R|X(r, 0)f+

X(0) + o(1)

uniformly in r, where the matrix A is given by

A =


κ0 κ1 0

κ1 κ2 0

0 0 κ2κ
∗
2

 and κ∗
2 =

∫ ∞

−∞
x2K(x)dx.

Note that the structure of A follows from the assumption that the kernel function K is a symmetric density

function. We now introduce a particular stochastic expansion for this estimator, which follows from standard

results in e.g. Masry (1996). Writing

Sn(r) =
1

n

n∑
i=1

e⊤1 Nn(r)
−1Li(r)Kh(Xi, Ri − r)εi

with εi = Yi − E(Yi|Xi, R
∗
i ), we have that

µ̃+(r) = µ+(r) + Sn(r) +O(h2) +OP

(
log(n)

nh2

)
uniformly over r ∈ S(R∗|X = 0). Using standard change-of-variables arguments, we find that∫

Sn(r)dΓ(r) =
1

n

n∑
i=1

e⊤1 Nn(Ri)
−1L∗

iKh(Xi)Γ(Ri)εi +O(h2)

with L∗
i = (1, Xi/h, 0)

⊤ · I{Xi > 0}. The first term on the right-hand-side of the last equation is a sample

average of n independent random variables, and clearly has mean zero. On the other hand, its variance is
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equal to

n−1E((e⊤1 Nn(Ri)
−1L∗

i )
2Kh(Xi)

2Γ(Ri)
2ε2i )

=
1

nhf+
X(0)2

∫ ∞

0

(e⊤1 A
−1(1, x, 0)⊤)2K(x)2E

(
Γ(R)2

f+
V |X(R, 0)2

· ε2
∣∣∣∣∣X = xh

)
fX(xh)dx+ o

(
1

nh

)

=
1

nhf+
X(0)2

∫ ∞

0

(e⊤1 A
−1(1, x, 0)⊤)2K(x)2dx · lim

x↓0
E

(
Γ(R)2

f+
V |X(R, 0)2

· ε2
∣∣∣∣∣X = xh

)
· lim
x↓0

fX(x)

+ o

(
1

nh

)
=

1

nhf+
X(0)

· C · σ2
+(0) + o

(
1

nh

)
.

The statement of the lemma then follows from an application of Lyapunov’s Central Limit Theorem.

As the final step of our proof of Theorem 2, the following lemma shows that ∆̃ and ∆̂ have the same

first order asymptotic properties.

Lemma 3. Suppose that the conditions of Theorem 2 hold. Then

∆̃− ∆̂ = oP ((nh)
−1/2)

as n → ∞.

Proof. First, using that µ̂(0) = E(Y |X = 0) +OP (n
−1/2) and Lemma 1, we find that

∆̂ =

∫
µ̂+(r)dΓ(r)− E(Y |X = 0) +OP (n

−1/2),

since µ̂+
Y |X,V (0, v) is easily seen to be a consistent estimate of a bounded function under the conditions of

the lemma. Similarly, we have that

∆̃ =

∫
µ̃+(r)dΓ(r)− E(Y |X = 0) +OP (n

−1/2),

It only remains to be shown that∫
µ̂+(r)dΓ(r) =

∫
µ̃+(r)dΓ(r) + oP ((nh)

−1/2).

We use recent results on nonparametric regression with generated covariates obtained by Mammen et al.

(2012, 2015) to show this statement. For convenience, we repeat the following notation, which was already
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introduced in the proof of Lemma 2:

Li(r) = (1, Xi/h, (Ri − v)/h)⊤ · I{Xi > 0},

Mn(r) =
1

n

n∑
i=1

Li(r)Li(r)
⊤Kh(Xi, Ri − v),

Nn(r) = E(Li(r)Li(r)
⊤Kh(Xi, Ri − v)).

It then follows from an application of Theorem 1 in Mammen et al. (2015) that∫
µ̂+(r)− µ̃+(r)− φn(r; F̂X|Z)dΓ(r) = oP ((nh)

−1/2)

under the conditions of the lemma, where for any conformable function Λ

φn(r; Λ) = −(∂m+(r)/∂v)e⊤1 Nn(r)
−1E(Li(r)Kh(Xi, Ri − v)(Λ(Xi, Zi)− FX|Z(Xi, Zi)))

+ e⊤1 Nn(r)
−1E(Li(r)K

′
h(Xi, Ri − v)(Λ(Xi, Zi)− FX|Z(Xi, Zi))Ψ(Xi, Zi))

with Ψ(Xi, Zi) = E(Yi|Xi, Zi) − E(Yi|Xi, Ri), and K ′
h(x, r) = ∂Kh(x, r)/∂r. We remark that the two

expectations in the previous equation are both taken with respect to the distribution of (Xi, Zi), so that

the term φn(r; F̂X|Z) remains a random variable due to its dependence on the estimate F̂X|Z . Also note

that under the null hypothesis the second summand in the formula for φn vanishes, because if the model is

correctly specified it holds that Ψ(Xi, Zi) = 0. As a consequence, the “index bias” term in Mammen et al.

(2015) is equal to zero. Next, it follows from the same arguments as in the proof of Theorem 4 in Mammen

et al. (2015) that ∫
φn(r; F̂X|Z)dΓ(r) = OP (n

−1/2) +O(h2) +O(g2) +OP

(
log n

ng

)
.

This completes our proof.

A.4. An Alternative Estimate of the Asymptotic Variance. In this section, we describe a plug-

in estimator of ρ2 that uses kernel-based nonparametric smoothers to estimate the various density and

conditional expectation functions involved in the definition of the asymptotic variance of ∆̂. Some technical

complications arise from the fact that many of these functions need to be evaluated at or close to the limits

of their support. This is a problem for standard kernel estimators, which are well-known to be inconsistent

at the boundary, and highly biased in its vicinity. Since we only require a consistent estimate of ρ2, and

not one that converges with a particular rate, we adopt a simple solution to this problem and introduce a

multiplicative correction term into all estimators of density functions. More elaborate procedures could be
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used to achieve better rates of convergence, but those are not necessary for our main results. The boundary

correction terms are of the form

sb(r) = K̄(min{r, 1− r}/b)−1 with K̄(t) =

∫ t

−∞
K(u)du (A.1)

for any b ∈ R and r ∈ (0, 1). We then estimate the function γ(r) = ∂Γ(r)/∂r by the sample analogue

γ̂(r) = (1− ĝ(r))/(
n∑

i=1

I{Xi = 0}/n),

where

ĝ(r) = sb1(r) ·
1

n

n∑
i=1

Kb1(R̂i − v)I{Xi > 0}.

Here b1 is a one-dimensional bandwidth that tends to zero as n tends to infinity. By including the boundary

correction term sb1(r) into the definition of ĝ(r), we achieve that the estimator γ̂ is uniformly consistent

under weak regularity conditions. We also define

f̂+
R|X(r;x) = sb2(r) ·

∑n
i=1 Kb2(R̂i − v,Xi − x)I{Xi > 0}∑n

i=1 Kb2(Xi − x)I{Xi > 0}
and

f̂+
X(0) =

2

n

n∑
i=1

Kb1(Xi)I{Xi > 0},

where b2 is another one-dimensional bandwidth that tends to zero as n tends to infinity. Again, consistency

of these two estimates for the corresponding population counterparts is achieved by including a boundary

correction term for the first estimator, and multiplication by two for the second estimator. The estimate the

term σ2
+ is given by

σ̂2
+ = e⊤1,1 argmin

(a1,a2)

n∑
i=1

(η̂i − a1 − a2Xi)
2
Kb1(Xi)I{Xi > 0}.

where

η̂i = (Yi − µ̂(Xi, R̂i)) ·
γ̂(R̂i)

f̂R|X(R̂i, 0)
,

and

µ̂(x, v) = e⊤1,2 argmin
(a1,a⊤

2 )

n∑
i=1

(
Yi − a1 − a⊤2 (Xi − x, R̂i − v)

)2
Kh(Xi − x, R̂i − v)I{Xi > 0},

which is similar in structure to the estimate µ̂+(v) defined above. Our final estimator of ρ2 is then given by

ρ̂2 = C ·
σ̂2
+

f̂+
X(0)

.
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The constant C depends on the kernel function and can be computed numerically. For example, C ≈ 1.78581

for the the Gaussian kernel.

Theorem 4. Suppose that Assumption 3 holds, and that bj → 0, nbj → ∞ and (ngdz/ log(n)+ g−4)/b2j → 0

as n → ∞ for j = 1, 2. Then ρ̂2
p−→ ρ2.

Proof. Let

g(r) = ∂P (R ≤ r,X > 0)/∂v

be the population counterpart of ĝ(r), and

g̃(r) = sb1(r) ·
1

n

n∑
i=1

Kb1(Ri − v)I{Xi > 0}.

be an infeasible estimator of g(r) that uses the true Ri = FX|Z(X,Z) instead of the estimates R̂i =

F̂X|Z(X,Z). From a simple Taylor expansion, it follows that

sup
v

|ĝ(v)− g̃(v)| = OP

(
max

i=1,...,n
|R̂i −Ri|/b1

)
= op(1)

since maxi=1,...,n |R̂i−Ri| = OP ((ng
dz/ log(n))1/2)+O(g−2). Moreover, standard results from kernel density

estimation imply that

sup
v

|g̃(v)− g(v)| = op(1).

Similar arguments can be used to show that f̂+
R|X(r; 0) and f̂+

X(0) are uniformly consistent estimates of

limx↓0 fR|X(r;x) and limx↓0 fX(x), respectively. Consistency of σ̂2
+ for σ2

+ then follows from the linearity of

the local linear smoothing operator.
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