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Abstract

We develop a general approach to estimating the derivative of a function-valued
parameter θo(u) that is identified for every value of u as the solution to a moment
condition. This setup in particular covers interesting models for conditional distributions,
such as quantile regression or distribution regression. Exploiting that θo(u) solves a
moment condition, we obtain an explicit expression for its derivative from the Implicit
Function Theorem, and then estimate the components of this expression by suitable
sample analogues. The last step generally involves (local linear) smoothing of the
empirical moment condition. Our estimators can then be used for a variety of purposes,
including the estimation of conditional density functions, quantile partial effects, and
the distribution of bidders’ valuations in structural auction models.
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1. INTRODUCTION

Estimating the conditional distribution of a dependent variable Y given covariates X is an

important problem in many areas of applied economics. For example, studies of changes

in income inequality often involve estimation of the conditional distribution of workers’

wages given their observable characteristics (e.g. Machado and Mata, 2005; Autor, Katz, and

Kearney, 2008). Such applications require models that on the one hand are flexible enough to

capture the potentially highly heterogeneous impact of covariates on the dependent variable

at different points in the distribution, but on the other hand can also be estimated using

computationally and theoretically attractive methods. A model that is particularly popular

in such contexts is the linear quantile regression (QR) model (Koenker and Bassett, 1978),

which specifies the conditional quantile function QY |X(u, x) of Y given X as

QY |X(u, x) = x′θo(u).

Another model that has received attention recently is the linear distribution regression (DR)

model (Foresi and Peracchi, 1995), which specifies the conditional c.d.f. FY |X(u, x) of Y given

X as

FY |X(u, x) = Λ(x′θo(u)),

where Λ(·) is a known link function that, for convenience, is often taken to be the Logit

function.1 A common feature of these two models, and other models for conditional distribu-

tions, is that the respective specification depends on a function-valued parameter θo(u) for

which, at every appropriate value of u, there exists an asymptotically normal estimator that

converges at the usual parametric rate.

In this paper, we consider the problem of estimating the derivative θuo (u) = ∂uθo(u) of the
1Which of the two models, if any, is suitable for a particular empirical applications depends on the specific

context. See Chernozhukov, Fernández-Val, and Melly (2013) and Leorato and Peracchi (2015) for discussions
of the relative merits of QR and DR models, and Rothe and Wied (2013) for a formal specification test.

2



function-valued parameter in a class of moment condition models that nest the QR and DR

models. This derivative plays an important role in estimating many interesting functionals of

a conditional distribution. One application is the estimation of conditional density functions.

In the QR model, for instance, the conditional density of Y given X is

fY |X(y, x) = 1
x′θuo (FY |X(y, x)) ,

with FY |X(y, x) =
∫ 1

0 I{x′θo(u) ≤ y}du the conditional c.d.f. of Y given X implied by the QR

model. Similarly, in the DR model, the conditional density of Y given X is

fY |X(y, x) = λ(x′θo(y))x′θuo (y),

with λ(u) = ∂uΛ(u) the derivative of the link function. Other applications we consider in this

paper include estimating the distribution of bidders’ private valuations of auctioned objects

based on a QR specification of the distribution of observed bids, and estimating Quantile

Partial Effects (QPEs) in a DR model.

Our general approach to estimating the derivative of the function-valued parameter θo(u)

is the same for both QR and DR models, as these models share a common structure. In

both cases, the parameter θo(u) is identified for every value of u in some index set as the

solution to a moment condition or estimating equation. We exploit this structure to obtain a

general and explicit expression for θuo (u) from the Implicit Function Theorem, and estimate

the components of this expression by suitable sample analogues.

This approach does not only apply to QR and DR models, but all setups that share the

same general features. The implementation details of our estimation strategy depend on the

exact properties of the respective moment condition though. For both QR and DR models

some form of smoothing is needed. We use local linear smoothing in this case, which leads

to a computationally simple estimator with attractive theoretical properties. For both QR

and DR, we show that our estimator of the derivative θuo (u) is asymptotically normal and
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has bias and variance whose order of magnitude is analogous to that of a one-dimensional

nonparametric kernel estimator of the level of a regression function. These properties then

carry over to the above-mentioned applications like density estimation via the Continuous

Mapping Theorem.

Our paper is connected to a well-established literature on quantile regression, surveyed

for example in Koenker (2005). It also contributes to an emerging literature on distribution

regression, which was originally proposed by Foresi and Peracchi (1995) and further studied

by Chernozhukov, Fernández-Val, and Melly (2013). See also Rothe (2012, 2015) for examples

of applications of distribution regression in economics, Rothe and Wied (2013) for specifi-

cation testing, and Leorato and Peracchi (2015) for a comparison with quantile regression.

Chernozhukov, Fernández-Val, and Melly (2013) obtain many general results regarding the

properties of estimators of function-valued regular parameters. Our paper seems to be the

first to address the estimation of derivatives of such parameters in general settings. However,

at least the specific problem of estimating the derivative Qu
Y |X(u, x) = ∂uQY |X(u, x) of a

conditional quantile function with respect to the quantile level has been studied before. In

particular, Parzen (1979), Xiang (1995), and Guerre and Sabbah (2012) propose methods

based on smoothing an estimate of the function u 7→ QY |X(u, x), whereas Gimenes and

Guerre (2013) propose an estimator based on an augmented quantile regression problem with

a locally smoothed criterion function. Both approaches differ conceptually from the one we

propose in this paper; we explain this in more detail below.

The remainder of this paper is structured as follows. In Section 2, we describe a general

approach to estimating the derivative of the function-valued parameters in a class of models

that give rise to a moment condition or estimating equation of a particular form. In Sections

3 and 4, we apply this approach to QR and DR models, respectively, and study some

applications. Section 5 reports the results of a simulation study, and Section 6 concludes. All

proofs are contained in the appendix. Throughout the paper, we use repeated superscripts
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to denote the partial derivatives of functions up to various orders. That is, with g(y, x) a

generic function, we write gy(y, x) = ∂yg(y, x), gyy(y, x) = ∂2
yg(y, x), gyyy(y, x) = ∂3

yg(y, x),

etc., for the first, second, third, etc., partial derivative with respect to y.

2. GENERAL APPROACH

While our primary interest is in estimating the derivative of the function-valued parameters

in QR and DR models, it is useful to motivate our approach in a more general setting that

covers both cases, and also potentially other interesting ones.

2.1. Framework

Suppose that there is a function-valued parameter u 7→ θo(u), with u ∈ U = [u∗, u∗] ⊂ R

and θo(u) ∈ Θ = ×pj=1[θj∗, θj∗] ⊂ Rp, that is identified for every u ∈ U through a moment

condition. That is, there exists a function M(θ, u) = E(m(Z, θ, u)), with m a known function

taking values in Rp and Z an observable random vector, such that

M(θ, u) = 0 if and only if θ = θo(u) (2.1)

for every u ∈ U . The moment conditionM(θ, u) is assumed to be smooth with respect to both

θ and u, but the underlying moment function m(Z, θ, u) can potentially be non-differentiable.

The data consist of an i.i.d. sample {Zi}ni=1 from the distribution of Z, and there is an

estimator θ̂(u) of θo(u) satisfying

∥∥∥M̂(θ̂(u), u)
∥∥∥2

= inf
θ∈Θ

∥∥∥M̂(θ, u)
∥∥∥2

+ oP (n−1/2), (2.2)

uniformly over u ∈ U , where M̂(θ, u) = n−1∑n
i=1m(Zi, θ, u) is the sample version of the

moment condition. Under regularity conditions (e.g. Chernozhukov, Fernández-Val, and

Melly, 2013), the random function u 7→
√
n(θ̂(u) − θo(u)) then converges to a mean zero
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Gaussian process with almost surely continuous paths, and for fixed u ∈ U it holds that

√
n(θ̂(u)− θo(u)) d→ N

(
0,M θ(θo(u), u)−1S(θo(u), u)M θ(θo(u), u)−1

)
, (2.3)

where S(θo(u), u) = E(m(Z, θo(u), u)m(Z, θo(u), u)>). Many flexible models for conditional

distributions, including QR and DR, fit into this framework.

2.2. Parameter of interest

We are interested in estimating the derivative θuo (u) = ∂uθo(u) of the function-valued parameter

θo(u), which, as pointed put above, plays an important role in several applications. Such an

estimator cannot be obtained by simply taking the an analytical derivative of the function

u 7→ θ̂(u), as this random function is generally not differentiable. Our proposed approach is

based on direct sample-analogue estimation of θuo (u). To this end, the next proposition gives

primitive conditions for the existence of this derivative, and derives an explicit expression.

Proposition 1. Suppose that the function (θ, u) 7→ M(θ, u) is continuously differentiable

over Θ× U , and that the matrix M θ(θo(u), u) is invertible for all u ∈ U . Then the function

u 7→ θo(u) is continuously differentiable over U , and

θuo (u) = −M θ(θo(u), u)−1Mu(θo(u), u) (2.4)

is its first derivative.

This result follows directly from the Implicit Function Theorem. Heuristically, the formula

for θuo (u) can be obtained by taking the total derivative of u 7→ M(θo(u), u), and noting

that because of the identification condition (2.1) this derivative is equal to zero for every

value of u. Strengthening the conditions of the proposition to (θ, u) 7→M(θ, u) being k times

continuously differentiable for some integer k yields that u 7→ θo(u) is k times continuously

differentiable; and one can obtain an explicit formula analogous to (2.4) for derivatives of

6



θo(u) up to order k in this case. However, we do not pursue estimation and inference for such

objects in this paper.

2.3. Estimation approach

Proposition 1 motivates constructing an estimator θ̂u(u) of θuo (u) as a sample analogue of

the representation (2.4). That is, with M̂ θ(θ, u) and M̂u(θ, u) suitable sample analogues of

M θ(θ, u) and Mu(θ, u), respectively, we put

θ̂u(u) = −M̂ θ(θ̂(u), u)−1M̂u(θ̂(u), u).

We argue in more detail in Section 2.4 below that this general approach to estimating θuo (u)

is attractive for both theoretical and practical reasons.

The details of how to obtain “suitable” sample analogues ofM θ(θ, u) andMu(θ, u) depend

on the particular setup. If the function m(Z, θ, u) is differentiable with respect to θ and/or u,

and the respective derivative is available analytically, it is natural to define such estimators as

M̂ θ(θ, u) = 1
n

n∑
i=1

mθ(Zi, θ, u) and M̂u(θ, u) = 1
n

n∑
i=1

mu(Zi, θ, u),

respectively. Being sample means of simple transformations of i.i.d. data, these two quantities

are both easy to compute and straightforward to analyze.

If m(Z, θ, u) is not differentiable with respect to θ or u, it is necessary to use alternative

methods to estimateM θ(θ, u) orMu(θ, u), respectively. This issue occurs in both the QR and

the DR model: in each case, the respective moment function m(Z, θ, u) is only differentiable

with respect to one of the two arguments θ and u, and non-differentiable with respect to the

other. Such non-smoothness occurs even though the moment condition M(θ, u) is smooth

with respect to both arguments in QR and DR models.

We first consider the estimation of Mu
j (θ, u), the first derivative with respect to u of the

jth component of the vector-valued function M(θ, u). To motivate our approach, note that it

7



follows from the assumed differentiability of the population moment condition that

Mj(θ, v) ≈Mj(θ, u) +Mu
j (θ, u)(v − u) for v close to u.

Thus, if differentiability of m(Z, θ, u) with respect to u fails, a natural estimate of Mu
j (θ, u)

is given by a variant of local linear smoothing:

M̂u
j (θ, u) = argmin

β∈R

∫ u∗

u∗

(
M̂j(θ, v)− M̂j(θ, u)− β(v − u)

)2
Kh(v − u)dv. (2.5)

HereK is a density function with mean zero and compact support, say [−1, 1], that is bounded,

symmetric, differentiable, and vanishes at the boundary of its support; h is a bandwidth

chosen by the analyst; and Kh(s) is a shorthand notation for K(s/h)/h. Computing the

solution of (2.5) is simple and does not require the use of numerical optimization methods.

Indeed, simple algebra shows that

M̂u
j (θ, u) = 1

hκ2,h(u)

(∫ (u∗−u)/h

(u∗−u)/h
M̂j(θ, u+ vh)vK(v)dv − M̂j(θ, u)κ1,h(u)

)
,

where for any integer s and u ∈ U the constant κs,h(u) is defined as

κs,h(u) =
∫ (u∗−u)/h

(u∗−u)/h
vsK(v)dv.

Finally, we note that in many applications we can either take U = R, or focus on values of

u that are well in the interior of some bounded index set U . In such cases, the estimator

further simplifies to

M̂u
j (θ, u) = 1

hκ2

∫ 1

−1
M̂j(θ, u+ vh)vK(v)dv,

with κs =
∫ 1
−1 v

sK(v)dv.

The construction of an estimator M̂ θ(θ, u) in cases where differentiability of m(Z, θ, u)

with respect to θ fails proceeds similarly. That is, we estimate the (j, k)-entry of the (p× p)
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matrix M θ(θ, u) by

M̂ θ
jk(θ, u) = argmin

β∈R

∫ θj∗

θj∗

(
M̂k(θ−j(t), u)− M̂k(θ, u)− β(t− θj)

)2
Kh(t− θj)dt. (2.6)

Here θ−j(t) = (θ1, . . . , θj−1, t, θj+1, . . . , θp)′ is a shorthand notation for the p-dimensional

vector whose jth component is equal to t, and whose remaining components are equal to

the corresponding component of θ. The bandwidth h in (2.6) can be different from the one

in (2.5), but we leave this implicit in our notation. As above, we can express M̂ θ
jk(θ, u) as

M̂ θ
jk(θ, u) = 1

hκ2,h(θj)

(∫ (θj∗−θj)/h

(θj∗−θj)/h
M̂k(θ−j(θj + th), u)tK(t)dt− M̂(θ, u)κ1,h(θj)

)
,

where for all integers s, t and θ ∈ Θ the constant κs(θt) is defined as

κs,h(θt) =
∫ (θt∗−θt)/h

(θt∗−θt)/h
vsK(v)dv.

Note that we distinguish the kernel functionals κs,h(u) and κs,h(θk) through the name of

their argument only, which is a slight abuse of notation. In applications, we can often take

Θ = Rd, or focus on values of θ that are well in the interior of Θ. In such cases, the estimator

simplifies to

M̂ θ
jk(θ, u) = 1

hκ2

∫ 1

−1
M̂k(θ−j(θj + th), u)tK(t)dt.

It is difficult to provide a full analysis of the asymptotic properties of our smoothing-

based estimators of M θ(θ, u) and Mu(θ, u) under easily interpretable low-level conditions

in the context of an abstract moment condition model. One can show however, that these

estimators have bias of order O(h2) at interior points, bias of order O(h) at the boundary,

and variance of order O((nh)−1), all under rather general conditions.2 Moreover, one can
2Note that the bias properties are analogous to those of the local linear estimator of the derivative of a

conditional expectation function in a univariate nonparametric regression problem (Fan and Gijbels, 1996).
If boundary bias was a primary concern, one could obtain a bias of order O(h2) by switching to a local
quadratic estimator. However, as shown below, neither the QR nor the DR model naturally give rise to
boundary issues, and thus we do not formally investigate such estimators in this paper.
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derive an explicit formula for the leading bias term. Since our main interest in this paper is

in specific applications, we present these results in Appendix B. More detailed results, such

as asymptotic normality and explicit expressions for the asymptotic variance, are derived for

the special cases of QR and DR models in Section 3 and 4 below.

2.4. Discussion of possible variations of our estimation approach

There are in principle many ways in which one could change how the derivatives of the

function M(θ, u) are estimated. First, one could include an “intercept” parameter into the

least squares problem (2.5). However, simple algebra shows that if we were to estimate

Mu
j (θ, u), for example, by the second component of

argmin
(α,β)∈R2

∫ u∗

u∗

(
M̂j(θ, v)− M̂j(θ, u)− α− β(v − u)

)2
Kh(v − u)dv,

the resulting estimator would be identical to ours at interior points u, and have the same

general bias properties. We therefore focus on a local linear estimator without an intercept

term in this paper.

Second, one could replace our local linear derivative estimators with local constant ones.

For example, an estimate of Mu
j (θ, u) obtained by taking the derivative of a local constant

smoother would be of the form

∫ u∗

u∗
M̂j(θ, v)Kh(v − u)dv = h−1

∫ (u∗−u)/h

(u∗−u)/h
M̂j(θ, u+ th)Kt(t)dt,

with Kt(t) the derivative of K(t). Some algebra shows that this estimator has the same

asymptotic variance as the one we propose above, and less favorable bias properties for most

commonly used kernel functions. Hence we focus on local linear estimation in this paper.

Third, one could estimate the derivatives of M(θ, u) by finite-difference methods, which

are routinely used in many software packages for numerical differentiation. In its simplest
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(two-sided) form, such an estimator of, say, Mu
j (θ, u) is given by

M̂(θ, u+ ε)− M̂(θ, u− ε)
2ε

for some ε > 0 that is chosen by the analyst. Since θ̂(u) is non-smooth in u, this estimator could

be sensitive to the choice of ε. Hong, Mahajan, and Nekipelov (2015) provide consistency

results for such estimators and their generalizations, but do not establish distributional

properties of the kind needed for our analysis below, such as asymptotic normality. We note

that our derivative estimators can be interpreted as a weighted average of a continuum of

simple “one-sided” finite-difference estimators. That is, we have that

M̂u
j (θ, u) =

∫ u∗−u

u∗−u
β̂ε · ε2Kh(ε)dε

/∫ u∗−u

u∗−u
ε2Kh(ε)dε.

with β̂ε = (M̂(θ, u+ ε)− M̂(θ, u))/ε for ε 6= 0 a “one-sided” finite-difference estimator, and

β̂ε to an set to an arbitrary constant for ε = 0.

Finally, one could also estimate the derivatives of M(θ, u) by exploiting further structure

implied by a specific model. In particular, estimators of M θ(θ, u) have been proposed in

several contexts, since such estimates are needed to construct a plug-in estimator of the

asymptotic variance of θ̂(u); see equation (2.3). For example, for the special case of quantile

regression an estimator of M θ(θ, u) was proposed by Powell (1986); see our Section 3 for more

details. We are not aware of a paper that has proposed our specific procedure. Moreover,

papers that consider estimating M θ(θ, u) to obtain an estimate of the asymptotic variance of

θ̂(u) typically only provide consistency result, but do not develop distribution theory of the

kind we need for our analysis in Sections 3 and 4.

2.5. Discussion of different estimation approaches

An alternative to our general approach of estimating θuo (u) through an explicit expression

obtained from the Implicit Function Theorem would be to compute the derivative of a

11



smoothed version of the function u 7→ θ̂(u). If local linear smoothing is used, for instance,

the jth component of the corresponding estimator is given by

argmin
β∈R

∫ (
θ̂j(v)− θ̂j(u)− β(v − u)

)2
Kh(v − u)dv, j = 1, . . . , p.

This approach is similar to the ones used by Parzen (1979), Xiang (1995), and Guerre and

Sabbah (2012) for estimating derivatives of quantile functions with respect to the quantile

level. Proceeding like this has the disadvantage that it requires computing θ̂(u) for many

values of u over a sufficiently fine mesh in order to approximate the integral with sufficient

numerical accuracy, even if one is only interested in θuo (u) for one particular value of u. This

is important because computation of θ̂(u) can be expensive in many settings. In contrast,

our procedure is computationally much less expensive, as we only require an estimate of θo(u)

to estimate θuo (u). Of course, this relative computational advantage vanishes if the researcher

is interested in estimating the entire function u 7→ θo(u).

A further alternative to our general estimation approach is due to Gimenes and Guerre

(2013). They consider an Augmented Quantile Regression estimator for the derivative of the

function-valued parameter in a QR model. Adapted to our general setting, their approach

amounts to estimating the pair (θo(u), θuo (u)) jointly by solving a linearly augmented and

smoothed version of the moment condition:

(
θ̃(u), θ̃u(u)

)
= argmin

θ∈Rp,β∈Rp

∥∥∥∥∫ M̂(θ + β(v − u), v)Kh(v − u)dv
∥∥∥∥2

The downside of proceeding like this is that it requires solving a higher-dimensional and

somewhat non-standard optimization problem, whereas our estimator can be computed

using routines that are implemented in most software packages. Moreover, augmenting the

criterion function as described in the last equation has the disadvantage that it gives rise to

an unnecessary bias term when estimating the function θo(u) itself.
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3. QUANTILE REGRESSION

In this section, we study our approach in the context of a QR model, and consider applications

to conditional density and density-quantile estimation, and to recovering bidders’ valuations

from auction data.

3.1. Setup and estimators

In a linear QR model (Koenker and Bassett, 1978; Koenker, 2005), the conditional quantile

function QY |X(u, x) of a dependent variable Y ∈ Y given a vector of covariates X ∈ X ⊂ Rp

is specified for a range of quantile levels u ∈ U = [u∗, u∗] ⊂ (0, 1) as QY |X(u, x) = x′θo(u),

and the parameter vector θo(u) is estimated by

θ̂(u) = argmin
θ∈Rp

n∑
i=1

(u− I{Yi ≤ X ′iθ})(Yi −X ′iθ).

Under regularity conditions stated formally below, this model fits into our general setup with

Z = (Y,X ′)′, Θ = Rp,

m(Z, θ, u) = (I{Y ≤ X ′θ} − u)X

M(θ, u) = E((FY |X(X ′θ,X)− u)X).

In the QR model, the derivatives of M(θ, u) with respect to θ and u are therefore given by

M θ(θ, u) = E(fY |X(X ′iθ,Xi)XiX
′
i) and Mu(θ, u) = −E(Xi),

respectively. Since M θ(θ, u) does not depend on u, and Mu(θ, u) does not depend on either

θ or u, we denote these objects by M θ(θ) and Mu, respectively, for the remainder of this

section to simplify the notation. We then estimate Mu by

M̂u = − 1
n

n∑
i=1

Xi,
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and construct an estimator M̂ θ
jk(θ) of the (j, k) element of M θ(θ) as in described in (2.6).

The last step yields the expression

M̂ θ
jk(θ) = 1

nhκ2

n∑
i=1

Xk,i

(∫ ∞
−∞

I{Yi ≤ X ′iθ +Xj,ith}tK(t)dt
)
,

with κs =
∫ 1
−1 v

sK(v)dv. Note that since Θ = Rp, the area of integration in the last equation

does not require a boundary adjustment irrespective of the value of θ. With some algebra,

we can write this estimator a bit more efficiently as

M̂ θ
jk(θ) = 1

nκ2

n∑
i=1

Xk,i sign(Xj,i)K̄h

(
Yi −X ′iθ
|Xj,i|

)
,

where K̄(s) =
∫ 1
s tK(t)dt is a new “pseudo-kernel” function (it is a symmetric, positive

function, but generally does not integrate to one), K̄h(s) = K̄(s/h)/h, and sign(x) = I{x >

0}− I{x < 0} is the sign function. Note that our notation here is to be understood such that

sign(Xj,i)K̄h ((Yi −X ′iθ)/|Xj,i|) = 0 if Xj,i = 0.

The new expression for M̂ θ
jk(θ) is convenient for the derivation of asymptotic properties,

and highlights the similarities with objects commonly studied in the context of kernel-based

nonparametric regression.3 The final estimator of the derivative θuo (u) of the function-valued

parameter θo(u) in the QR model is then given by

θ̂u(u) = −M̂ θ(θ̂(u))−1M̂u.

We note that estimators of M θ(θ) that differ from the one we study in this paper have

long been available in the quantile regression literature. The one most similar to ours is due
3Note that while the matrix Mθ(θ) is symmetric under the QR model, the estimator M̂θ(θ) is generally

not. To improve finite-sample properties, one could therefore consider the “symmetrized” estimator (M̂θ(θ) +
M̂θ(θ)′)/2 instead.
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to Powell (1986), and given by

M̂ θ
P (θ) = 1

nh

n∑
i=1

Kh(Yi −X ′iθ)XiX
′
i.

This estimator exploits the specific functional form of M θ(θ) in the quantile regression

context, whereas ours is derived from a general principle that applies to all setups described

in Section 2. Still, one could use the Powell estimator to construct an alternative estimator of

θuo (u) as θ̂uP (u) = −M̂ θ
P (θ̂(u))−1M̂u, and this estimator would be slightly simpler to analyze

due to the Powell estimator’s somewhat simpler functional form. In our simulations reported

below, our estimator θ̂u(u) had a slight edge over θ̂uP (u).

3.2. Theoretical properties

To derive the asymptotic properties of θ̂u(u), we make the following assumption.

Assumption 1. (a) The conditional quantile function takes the form QY |X(u, x) = x′θo(u)

for all u ∈ U and all x ∈ X ; (b) the conditional density function fY |X(y, x) exists, is

uniformly continuous over the support of (Y,X), uniformly bounded, is three times continuously

differentiable with respect to its first argument, and its derivatives are uniformly bounded

over the support of (Y,X); (c) The minimal eigenvalue of M θ(θo(u)) is bounded away from

zero uniformly over u ∈ U ; (d) E(‖X‖4+δ) <∞ for some δ > 0; (e) the bandwidth h satisfies

h→ 0 and nh2/ log(n)→∞ as n→∞.

Assumption 1 collects conditions that are mostly standard in the literature on QR models.

Part (a) assumes that the QR model is correctly specified. This is strictly speaking not

necessary, but facilitates the interpretation of our results.4 Part (b) is a regularity condition

on the conditional density function fY |X(y, x). Part (c) implies that the conditional density

fY |X(y, x) is bounded away from zero over an appropriate range of (y, x) values. Part (d) is

4Under misspecification, our estimator θ̂u(u) is an estimate of the derivative of the “pseudo-true” parameter
θo(u) that solves the moment condition M(θ, u) = 0.
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a technical condition on the moments of the covariates. Finally, part (e) imposes restrictions

on the rate at which the bandwidth tends to zero in large samples. This is such that certain

uniform convergence arguments can be used in our proofs.

Under Assumption 1, both θ̂(u) and M̂u are
√
n-consistent, whereas each element of the

matrix M̂ θ(θo(u)) converges to its population counterpart at a slower nonparametric rate.

Heuristically, this means that

θ̂u(u)− θuo (u) ∼= M θ(θo(u))−1
(
M̂ θ(θo(u))−M θ(θo(u))

)
M θ(θo(u))−1Mu,

and thus the stochastic properties of M̂ θ(θo(u)) drive the asymptotic behavior of θ̂u(u). To

state this result formally, we introduce some notation. For every θ ∈ Θ, let N(θ) be a random

p× p matrix whose elements are such that the covariance between the (j, k) and the (l,m)

element is equal to

σl,mj,k (θ) = κ−2
2 E

(
Xk,iXm,ifY |X(X ′iθ,Xi) sign(Xj,iXl,i)

∫
K̄(s)K̄(s|Xj,i|/|Xl,i|)ds

)
,

let vec(·) be the usual vectorization operator that stacks the columns of a matrix into a single

vector, and put Σ(θ) = V(vec(N(θ))), so that Σ(θ) is a matrix that contains the covariance

terms of the form σl,mj,k (θ) in appropriate order. We then define the variance matrix

Vo(u) = M θ(θo(u))−1(Ip ⊗M θ(θo(u))−1Mu)Σ(θo(u))(Ip ⊗M θ(θo(u))−1Mu)′M θ(θo(u))−1,

where Ip is the p× p identity matrix, and “⊗” denotes the Kronecker product operator. We

also define the bias functions

B∗(u) = M θ(θo(u))−1A∗(θo(u))M θ(θo(u))−1Mu and

B(u) = M θ(θo(u))−1A(θo(u))M θ(θo(u))−1Mu,
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where A∗(θ) as the p× p matrix whose (j, k) element is equal to

Aj,k,∗(θ) = E(M̂ θ
jk(θo(u)))−M θ

jk(θo(u)),

and A(θ) be the p× p matrix whose (j, k) element is equal to

Aj,k(θ) = h2

6
κ4

κ2
E(f yyY |X(X ′iθ,Xi)Xk,iX

3
j,i)

With this notation, we obtain the following result.

Theorem 1. Suppose that Assumption 1 holds. Then B∗(u) = B(u) + o(h2) and

√
nh(θ̂u(u)− θuo (u)−B∗(u)) d→ N (0, Vo(u)),

The theorem shows that θ̂u(u) has bias of order O(h2) and variance of order O((nh)−1)

for every value of u ∈ U . Note that since the bias function depends in the inverse of fY |X ,

the bias can potentially be large if u corresponds to a quantile level for which the conditional

density is low. Choosing h ∼ n−1/5 minimizes the order of the asymptotic mean squared error,

and choosing h such that nh5 → 0 as n→∞ ensures that the bias of θ̂u(u) is asymptotically

negligible. In the latter case, we can also conduct inference using a consistent estimator

of the asymptotic variance Vo(u). Such an estimator can be obtained using the plug-in as

follows. First, note that a simple consistent estimator of the covariance term σl,mj,k (θ) is

σ̂l,mj,k (θ) = 1
nκ2

2

n∑
i=1

(
Xk,iXm,id̂Y |X(u,Xi) sign(Xj,iXl,i)

∫
K̄(s)K̄(s|Xj,i|/|Xl,i|)ds

)

with d̂Y |X(u, x) = 1/x′θ̂u(u) the estimator of the density-quantile function dY |X(u, x) ≡

fY |X(QY |X(u, x), x) studied in Section 3.3 below. Next, let Σ̂(θ) be the estimate of Σ(θ) that

contains the covariance estimates of the form σ̂l,mj,k (θ) in appropriate order. We can then

consistently estimate Vo(u) by

V̂ (u) = M̂ θ(θ̂o(u))−1(Ip ⊗ M̂ θ(θ̂(u))−1M̂u)Σ̂(θ̂(u))(Ip ⊗ M̂ θ(θ̂(u))−1M̂u)′M̂ θ(θ̂(u))−1.
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3.3. Application to density estimation

We can use the structure implied by a linear QR model to estimate the conditional density

function fY |X(y, x) of Y given X. This is an important application because certain distribu-

tional features, such as the location of modes, are easier to detect on a density graph than on

the graph of a quantile function. In a QR model, we have that

fY |X(y, x) = 1
x′θuo (FY |X(y, x)) , with FY |X(y, x) =

∫ 1

0
I{x′θo(u) ≤ y}du

the conditional c.d.f. of Y given X implied by the QR model. By exploiting this structure,

we can circumvent the “curse of dimensionality” that makes fully nonparametric estimation

of conditional densities infeasible in settings with many covariates. Specifically, a natural

conditional density estimator in this context is

f̂Y |X(y, x) = 1
x′θ̂u(F̂Y |X(y, x))

with F̂Y |X(y, x) = u∗ +
∫ u∗

u∗
I{x′θ̂(u) ≤ y}du.

Note that since the quantile regression model is only assumed to be correctly specified for

quantile levels u ∈ [u∗, u∗] ⊂ (0, 1), density estimation is naturally restricted to values of (y, x)

such that QY |X(u∗, x) < y < QY |X(1− u∗, x). To obtain some intuition for the theoretical

properties of our density estimator, first note that F̂Y |X(y, x) is
√
n-consistent, as it is a linear

transformation of the
√
n-consistent process θ̂(u). One can then prove that the asymptotic

behavior of f̂Y |X(y, x) is driven by that of the slower-converging derivative estimator θ̂uo (u) at

the point u = FY |X(y, x). The following corollary formally states the result.

Corollary 1. Suppose that Assumption 1 holds, and that (y, x) ∈ R1+d is such that QY |X(u∗, x) <

y < QY |X(1− u∗, x). Then

√
nh

(
f̂Y |X(y, x)− fY |X(y, x) + x′B∗(FY |X(y, x))

fY |X(y, x)2

)
d→ N

(
0, x

′Vo(FY |X(y, x))x
fY |X(y, x)4

)
.

Since the asymptotic bias of the density estimate f̂Y |X is inverse proportional to the
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squared actual density fY |X , we would expect the see a relatively large bias in areas where

the density is low. For example, if y 7→ fY |X(y, x) is roughly bell-shaped for every value of

x, we would expect to see an increasingly large bias in f̂Y |X(y, x) as y moves towards the

tails of the distribution. We also note that the limiting distribution in the previous corollary

can be a poor approximation to the actual finite-sample distribution of the density estimate

f̂Y |X in areas where the conditional quantile function is rather flat, and thus x′θuo (u) is close

to zero. This is because the delta method used in its proof is well-known to yield inexact

approximations for an inverse function that is evaluated close to zero with high probability.

3.4. Application to density-quantile estimation

An application that is closely related to density estimation is that of estimating the density-

quantile function dY |X(u, x) = fY |X(QY |X(u, x), x) of Y given X. Parzen (1979) highlights

the role of this function for exploratory data analysis, but it also plays are role for estimating

the asymptotic variance of the quantile regression estimator θ̂(u), which is given by

u(1− u)E(dY |X(u,Xi)XiX
′
i)−1E(XiX

′
i)E(dY |X(u,Xi)XiX

′
i)−1;

see Koenker (2005). In the QR model, the density-quantile function and its natural estimator

are easily seen to be

dY |X(u, x) = 1
x′θuo (u) and d̂Y |X(u, x) = 1

x′θ̂u(u)
,

respectively; and the theoretical properties of the estimator are straightforward to establish.

Corollary 2. Suppose that Assumption 1 holds. Then

√
nh

(
d̂Y |X(u, x)− dY |X(u, x) + x′B∗(u)

dY |X(u, x)2

)
d→ N

(
0, x′Vo(u)x
dY |X(u, x)4

)
.
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3.5. Application to estimating bidders’ valuations in auctions

Another interesting way to exploit the structure of a QR model occurs in the analysis of

auction data in economics. In a first-price sealed-bid auction with independent private values

(e.g. Guerre, Perrigne, and Vuong, 2000), an object with observable characteristics X ∈ Rp

is auctioned among b > 2 bidders. Each bidder submits a bid Yj, j = 1, . . . , b, without

knowing the bids of the others, and the object is sold to the highest bidder at the price

maxj=1,...,b Yj. Each bidder also has a private (unobserved) valuation Vj, j = 1, . . . , b of

the object, and these valuations are modeled as independent draws from an unknown c.d.f.

FV |X(·, X). Guerre, Perrigne, and Vuong (2009) show that if bidders are risk-neutral the

quantiles of the distribution of valuations can be written in terms of the quantiles of the

observed bids as

QV |X(u, x) = QY |X(u, x) +
uQu

Y |X(u|x)
b− 1 .

See Haile, Hong, and Shum (2003), Marmer and Shneyerov (2012) and Gimenes and Guerre

(2013) for related results. Using a linear QR specification for the conditional quantile function

of observed bids given the object’s characteristics, we find that

QV |X(u, x) = x′θ(u) + ux′θu(u)
b− 1 .

A natural estimator of QV |X(u, x) is thus given by

Q̂V |X(u|x) = x′θ̂(u) + ux′θ̂u(u)
b− 1 .

Since θ̂(u) converges faster than θ̂uo (u), the asymptotic properties of Q̂V |X(u, x) are again

driven by that of the derivative estimator. This is shown formally by the next result.
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Corollary 3. Suppose that Assumption 1 holds. Then

√
nh

(
Q̂V |X(u, x)−QV |X(u, x)− ux′B∗(u)

b− 1

)
d→ N

(
0, u

2x′Vo(u)x
(b− 1)2

)
.

4. DISTRIBUTION REGRESSION

In this section, we study our approach in the context of a Distribution Regression (DR)

model, and consider applications to estimating conditional densities and Quantile Partial

Effects (QPEs).

4.1. Setup and estimators

In a DR model (Foresi and Peracchi, 1995), the conditional c.d.f. FY |X(u, x) of Y ∈ Y ⊂ R

given X ∈ X ⊂ Rp is specified as FY |X(u, x) = Λ(x′θo(u)), where Λ(·) is a known link

function. We assume that this specification holds for all u ∈ Y, so that we can take

U = R here. For notational simplicity, we also postulate for this paper that the Logit link

Λ(u) = 1/(1 + exp(−u)) is used, but alternative ones such as Probit are of course possible as

well. For every u ∈ U , the parameter vector θo(u) is estimated by

θ̂(u) = argmin
θ∈Rp

n∑
i=1

(I{Yi ≤ u} log(Λ(X ′iθ)) + I{Yi > u} log(1− Λ(X ′iθ))) ,

which amounts to fitting a Logistic regression for each u ∈ U with I{Yi ≤ u} as the dependent

variable. Under regularity conditions stated below, this model fits into our general setup with

Z = (Y,X ′)′, Θ = Rp, U = R

m(Z, θ, u) = (I{Y ≤ u} − Λ(X ′θ))X

M(θ, u) = E
(
(FY |X(u,Xi)− Λ(X ′iθ))Xi

)
.
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In the DR model, the derivatives of M(θ, u) with respect to θ and u are therefore given by

M θ(θ, u) = −E(λ(X ′iθ)XiX
′
i) and Mu(θ, u) = E(fY |X(u,Xi)Xi),

respectively, where λ(u) = ∂uΛ(u) is the derivative of the Logit link function. Since M θ(θ, u)

does not depend on u, and Mu(θ, u) does not depend on θ, we denote these objects by M θ(θ)

and Mu(u), respectively, for the remainder of this section to simplify the notation. We then

estimate M θ(θ) by

M̂ θ(θ) = − 1
n

n∑
i=1

λ(X ′iθ)XiX
′
i,

and construct an estimator of Mu(u) as described in (2.5):

M̂u(u) = 1
nhκ2,h(u)

n∑
i=1

Xi

(∫ u∗

u∗
I{Yi ≤ u+ th}tK(t)dt− I{Yi ≤ u}κ1,h(u)

)
.

This estimator can be written a bit more efficiently as

M̂u(u) = 1
nhκ2,h(u)

n∑
i=1

Xi

(
K̄
(
Yi − u
h

)
− I{Yi ≤ u}κ1,h(u)

)
,

where K̄(s) =
∫ 1
s tK(t)dt as in the previous section; and for values of u such that u∗ + h <

u < u∗ − h we obtain the even simpler representation

M̂u(u) = 1
nκ2

n∑
i=1

XiK̄h(Yi − u),

In any case, we estimate θu(u) by

θ̂u(u) = −M̂ θ(θ̂(u))−1M̂u.

4.2. Theoretical properties

We study the asymptotic properties of θ̂u(u) under the following assumption.

Assumption 2. (a) The conditional c.d.f. takes the form FY |X(u, x) = Λ(x′θo(u)) for all
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u ∈ U and all x ∈ X ; (b) the conditional density function fY |X(y, x) exists, is uniformly

continuous over the support of (Y,X), uniformly bounded, is twice continuously differentiable

with respect to its first argument, and its derivatives are uniformly bounded over the support

of (Y,X); (c) The minimal eigenvalue of M θ(θo(u)) is bounded away from zero uniformly

over u ∈ U ; (d) E(‖X‖2+δ) < ∞ for some δ > 0; (e) the bandwidth h satisfies h → 0 and

nh/ log(n)→∞ as n→∞.

Assumption 2 collects conditions that are mostly standard in the literature on DR models,

and largely analogous to Assumption 1 in the previous section on QR models. The asymptotic

properties of θ̂u(u) then follow from arguments that are analogous to but simpler than the

ones used in the context of the QR model in the previous section. In particular, Assumption 2

guarantees that both θ̂(u) and M̂ θ(θ) are
√
n-consistent, whereas each element of the vector

M̂u(u) converges to its population counterpart at a slower nonparametric rate. Heuristically,

this means that

θ̂u(u)− θuo (u) ∼= M θ(θo(u))−1
(
M̂u(u)−Mu(u)

)
,

and that the stochastic properties of M̂u(u) drive the asymptotic behavior of θ̂u(u). To

formally state the result, we introduce the positive-definite variance matrix

Vo(u, c) =
∫ 1
−1 K̄(s)2ds

κ2
2

·M θ(θo(u))−1E(fY |X(u,Xi)XiX
′
i)M θ(θo(u))−1,

where κs =
∫ 1
−1 t

sK(t)dt; and we introduce the bias functions

B∗(u) = M θ(θo(u))−1
(
E(M̂u(u))−Mu(u)

)
and

B(u) = M θ(θo(u))−1h
2

6
κ4

κ2
E(fuuY |X(u,Xi)Xi).

We then obtain the following result.
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Theorem 2. Suppose that Assumption 2 holds. Then B∗(u) = B(u) + o(h2), we have that

√
nh(θ̂u(u)− θuo (u)−B∗(u)) d→ N (0, Vo(u)) .

The theorem shows that θ̂u(u) has bias of order O(h2) and variance of order O((nh)−1)

for all values of u.5 Choosing h ∼ n−1/5 minimizes the order of the asymptotic mean squared

error, and choosing h such that nh5 → 0 as n → ∞ ensures that the bias of θ̂u(u) is

asymptotically negligible. Finally, a simple consistent estimator of the asymptotic variance

Vo(u) is given by

V̂ (u) =
∫ 1
−1 K̄(s)2ds

κ2
2

· M̂ θ(θ̂(u))−1
(

1
n

n∑
i=1

f̂Y |X(u,Xi)XiX
′
i

)
M̂ θ(θ̂(u))−1,

with f̂Y |X(u, x) = λ(x′θ̂(u))x′θ̂u(u) the density estimator studied in the next subsection.

4.3. Application to density estimation

Similarly to the way we used the QR model above, we can use the structure implied by a DR

model to estimate the conditional density function fY |X(u, x) of Y given X. The density and

its natural estimator are given by

fY |X(u, x) = λ(x′θo(u))x′θuo (u) and f̂Y |X(u, x) = λ(x′θ̂(u))x′θ̂u(u),

respectively. Since θ̂(u) is
√
n-consistent and θ̂uo (u) converges as a slower rate, the asymptotic

properties of f̂Y |X(y, x) are driven by those of our derivative estimator.

Corollary 4. Suppose that Assumption 2 holds. Then

√
nh(f̂Y |X(u, x)− fY |X(u, x)− λ(x′θo(u))x′B∗(u)) d→ N (0, λ(x′θo(u))2x′Vo(u)x).

5If U is chosen as a compact set, one can show that the estimator θ̂u(u) has bias of order O(h) for values
of u on the boundary, but maintains the order O((nh)−1) for the variance; see our Appendix B. Choosing U
in such a way is often difficult to justify in practice, and hence we do not provide a detailed treatment of
boundary issues here.
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Through similar arguments, one could also obtain an estimator of the density-quantile

function (see the section on QR models above). Since this function is less useful in a DR

context, we omit the details in the interest of brevity.

4.4. Application to estimating quantile partial effects

The vector of Quantile Partial Effects (QPEs) of the conditional distribution of Y given

X is formally defined as π(τ, x) ≡ ∂xQY |X(τ, x) for any quantile level τ ∈ (0, 1). QPEs are

widely used and easily interpretable summary measures in many areas of applied statistics.

In the QR model, the function-valued parameter coincides with the QPE. This means

that the parametrization is easily interpretable, but also imposes the restriction that the

function x 7→ π(τ, x) is constant for every τ . Fully nonparametric estimation of QPEs has

been considered by Chaudhuri (1991), Lee and Lee (2008), or Guerre and Sabbah (2012);

but such methods become practically infeasible with many covariates due to the “curse of

dimensionality”.

Here we study the use of the DR model as an alternative way to estimate QPEs. This

is particularly attractive in economic application involving wage data, for which Rothe and

Wied (2013) argue DR often provides a better fit than QR models.6 An application of the

Implicit Function Theorem yields that under a DR specification

π(τ, x) = − θo(QY |X(τ, x))
x′θuo (QY |X(τ, x)) , with QY |X(τ, x) = inf{u : Λ(x′θo(u)) ≥ τ}

the conditional quantile function of Y given X implied by the DR model. This representation

of the QPE suggest the estimator

π̂(τ, x) = − θ̂(Q̂Y |X(τ, x))
x′θ̂u(Q̂Y |X(τ, x))

, with Q̂Y |X(τ, x) = inf{u : Λ(x′θ̂(u)) ≥ τ}.

6Results in Rothe and Wied (2013) suggest that linear QR specifications have difficulties capturing
the effect of the minimum wage and the substantial amount of heaping in wage data; whereas linear DR
specifications can deal with this issues much more easily.
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Since θ̂(u) is
√
n-consistent, so is Q̂Y |X(τ, x); and since θ̂uo (u) converges as a slower rate, the

asymptotic properties of π̂(τ, x) are again driven by those of our derivative estimator.

Corollary 5. Suppose that Assumption 2 holds. Then

√
nh

(
π̂(τ, x)− π(τ, x)− θo(QY |X(τ, x))x′B∗(QY |X(τ, x))

(x′θuo (QY |X(τ, x)))2

)
d→ N

(
0, θo(QY |X(τ, x))θo(QY |X(τ, x))′ · x

′Vo(QY |X(τ, x))x
(x′θuo (QY |X(τ, x)))4

)
.

5. NUMERICAL EVIDENCE

In this section, we present some numerical results regarding the performance of our proposed

estimation procedures. Specifically, we present the results of two simulation studies, and an

empirical illustration.

5.1. Simulation performance: comparison with other procedures

To illustrate the finite sample properties of our proposed procedure, and to show how these

compare to other methods one could use, we report the results of a small-scale Monte Carlo

study. For brevity, we focus on the QR model.7 We generate data as Y = X + (1 + X)U ,

where X follows a χ2 distribution with 1 degree of freedom, U follows a standard Logistic

distribution, and X and U are stochastically independent. This means that the conditional

quantile function of Y given X is QY |X(u, x) = Λ−1(u) + (Λ−1(u) + 1)x, which in turn means

that the linear QR model is correctly specified, with

θo(u) =
(
Λ−1(u),Λ−1(u) + 1

)′
and θuo (u) =

(
1

λ(Λ−1(u)) ,
1

λ(Λ−1(u))

)′
.

We consider estimating θuo (u) = (θuo,0(u), θuo,1(u))′ using the procedure proposed in this paper

for the quantile level u = .5, sample sizes n ∈ {1000, 4000}, and various bandwidth values.
7We conducted a Monte Carlo study analogous reported to the one in this section for the DR model, and

obtained results that are qualitatively very similar.
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We also use a triangular kernel, and set the number of replications to 10,000. Results on the

estimator’s finite sample bias, variance and mean squared error are given in Table 1. These

results can be compared to those for two alternative approaches to estimating θuo (u) discussed

in Section 2.4: smoothing the estimated quantile regression process and the using Augmented

Quantile Regression estimator of Gimenes and Guerre (2013). The corresponding results are

reported in Tables 2 and 3, respectively.

[TABLES 1–3 ABOUT HERE]

Overall, our approach compares favorably to the two competing procedures. While the

minimal MSE for estimating θuo,0(u), the derivative of the “intercept” parameter, is similar

across the three estimator, our procedure has a substantially smaller MSE when estimating

θuo,1(u), the derivative of the “slope” parameter. Indeed, MSE is reduced by about one third

to one quarter, depending on the sample size. This shows the potential usefulness of our

proposed procedure for applications, and shows that its advantages go beyond computational

simplicity. All estimators are sensitive with respect to the choice of the bandwidth parameter,

and the range of values that produces reasonable results is very different for our procedure

than it is for the two competitors. This is because the functions that are being smoothed are

conceptually different across the three procedures we consider here.

5.2. Simulation performance: conditional density estimation

We conduct a second simulation study to illustrate the performance of our method in

the context of conditional density estimation. We generate data in exactly the same way

as described in the previous subsection, and use a linear QR specification and the same

implementation details as before to estimate the conditional density function fY |X(y, x) for

x = 1 and various values of y. The panels of Figure 5.1 then show the true density function

(which is a location-scale transformation of a standard logistic density), together with the
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Figure 5.1: Simulation results: Figures show true conditional density function fY |X(y, x) for x = 1 and various values
of y (solid line) along with the pointwise median (crosses) and pointwise 95% and 5% quantiles (dashed line) of the
corresponding QR based conditional density estimator for n = 1, 000 (top panel) and n = 4, 000 (bottom panel); and for
bandwidth values h = .5 (left column), h = 1.5 (middle column), and h = 3 (right column).
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pointwise 5%, 50% and 95% quantiles of our density estimates across 10,000 simulation runs

for various sample sizes and bandwidth values.

Our estimator generally captures the overall shape of the density very well. The graphs

also show the bias-variance trade-off involved in choosing the bandwidth: larger bandwidths

reduce sampling variability, but tend to drive up the bias. The graphs also confirm the

theoretical prediction of Corollary 1 that bias of the density estimator is larger for values of y

in tails of the distribution of Y given X = 1 than it is in the center (this is the case because

the leading bias term is proportional to the squared inverse of fY |X(y, x)).

5.3. Empirical illustration

As a final illustration, we present an application of our method to real data. Specifically,

we use our approach to estimate the conditional density of US workers’ wages given some

standard explanatory variables. The data are taken from 1988 wave of the Current Population

Survey (CPS), an extensive survey of US households. The same data set was previously used

in DiNardo, Fortin, and Lemieux (1996), to which we refer for details of its construction. It

contains information on 74,661 males that were employed in the relevant period, including

the hourly wage, years of education and years of potential labor market experience.

For our empirical illustration, we fit QR and DR models for the conditional distribution

of the natural logarithm of hourly wages given education and experience, and then estimate

the corresponding conditional density function as described above. We use two different QR

and DR specifications for our exercise: one that only contains linear terms in education and

experience, and one that contains an additional quadratic term in experience.8

In Figure 5.2, we plot the resulting density estimates for a worker with 12 years of

education and 16 years of experience, the respective median values of the two variables. The
8A quadratic term in experience is commonly included in most textbook treatments of such Mincer-style

wage regressions.
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Figure 5.2: Estimated density of the natural logarithm of hourly wages given 12 years of
education and 16 years of experience using a QR specification with h = .4 (red line), DR
specification with h = .3 (blue line) and fully nonparametric specification with h = .09 (black
line). Shaded regions represent corresponding pointwise bootstrap confidence intervals with
nominal 95% coverage level.

results for the linear specification are shown in the left panel, and those for specifications

that include a quadratic term in experience are shown in the right panel. For comparison,

we also plot the standard Rosenblatt-Parzen kernel estimator of the density of log-wages,

computed from the 948 observations in our data with exactly 12 years of education and 16

years of experience in each of the panels. Finally, we add (pointwise) confidence intervals

with nominal level 95% based on a simple nonparametric bootstrap to each curve estimate in

Figure 5.2.

We can see that the sampling variability of the QR- and DR-based density estimates is

relatively small compared to that of the nonparametric density estimates in both panels of

Figure 5.2, reflecting the fact that the former two methods impose additional restrictions

and achieve a faster rate of convergence. In the left panel of Figure 5.2, the QR- and
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DR-based density estimates differ somewhat from each other, and both differ clearly from

the nonparametric kernel estimator. The plotted pointwise confidence intervals suggest that

these difference are not purely due to chance. In the present case, the difference is most likely

due to a linear QR and DR specification being too restrictive in the present context, leading

the corresponding density estimates to suffer from misspecification bias. The right panel

of Figure 5.2 shows that simply adding a quadratic term in experience to the QR and DR

specification essentially removes this issue: all three estimates shown there are very similar.

6. CONCLUSIONS

In this paper, we propose a new method for estimating the derivative of “regular” function-

valued parameters in a class of moment condition models, and provide a detailed analysis of

its theoretical properties for the special cases of Quantile Regression and Distribution Re-

gression models. Possible applications for our method include conditional density estimation,

estimation of Quantile Partial Effects, and estimation of auction models. Our simulation

results suggests that the method compares favorably to alternative approaches that have

been proposed in the literature.

A. PROOFS

A.1. Proof of Theorem 1

To simplify the exposition, we prove the theorem for the special case that all components of

X only take strictly positive values with probability 1 (the general result follows from the

same arguments with an additional case distinction). We begin by studying the properties of
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the matrix M̂ θ(θ). Simple algebra shows that its (j, k) element is

M̂ θ
jk(θ) = 1

nhκ2

n∑
i=1

Xk,i

(∫
I{Yi ≤ X ′iθ−j(θj + th)}tK(t)dt

)

= 1
nhκ2

n∑
i=1

Xk,i

(∫
I{Yi ≤ X ′iθ +Xj,ith}tK(t)dt

)

= 1
nhκ2

n∑
i=1

Xk,i

(∫
t≥(Yi−X′iθ)/(Xj,ih)

tK(t)dt
)

= 1
nκ2

n∑
i=1

Xk,iK̄h

(
Yi −X ′iθ
Xj,i

)
,

where K̄(s) =
∫ 1
s tK(t)dt. Standard kernel calculations involving a change of variables and a

Taylor expansion of the conditional p.d.f. fY |X then yield that

E
(
M̂ θ

jk(θ)
)

= M θ
jk(θ) + h2

6
κ4

κ2
E(f yyY |X(X ′iθ,Xi)Xk,iX

3
j,i) + o(h2);

so that M̂ θ
jk(θ) has bias of order O(h2). Similarly, we have that

E

X2
k,iK̄h

(
Yi −X ′iθ
Xj,i

)2
 = h−1E

(
X2
k,i

∫
K̄(s)2fY |X(Xj,ish+X ′iθ,Xi)ds

)

= h−1
∫
K̄(s)2dsE

(
X2
k,ifY |X(X ′iθ,Xi)

)
+ o(h−1) and

E
(
Xk,iK̄h

(
Yi −X ′iθ
Xj,i

))
= E

(
Xk,i

∫
K̄(s)fY |X(Xj,ish+X ′iθ,Xi)ds

)

=
∫
K̄(s)dsE(Xk,ifY |X(X ′iθ,Xi)) + o(1);

which means that M̂ θ
jk(θ) has variance of order O((nh)−1):

V
(
M̂ θ

jk(θ)
)

= 1
nh

∫
K̄(s)2ds

κ2
2

E(X2
k,ifY |X(X ′iθ,Xi)) + o((nh)−1).

Note that the leading term in this variance does not depend on j. Next, we calculate

the covariance between M̂ θ
jk(θ) and M̂ θ

lm(θ). Since, by the smoothness properties of the
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conditional density function fY |X , we have that

E
(
Xk,iXl,iK̄h

(
Yi −X ′iθ
Xj,i

)
K̄h

(
Yi −X ′iθ
Xm,i

))

= h−1E
(
Xk,iXl,i

∫
K̄(s)K̄(sXj,i/Xm,i)fY |X(Xj,ish+X ′iθ,Xi)

)
ds

= h−1E
(
Xk,iXl,i

∫
K̄(s)K̄(sXj,i/Xm,i)dsfY |X(X ′iθ,Xi)

)
+ o(h−1),

we find that

Cov
(
M̂ θ

jk(θ), M̂ θ
lm(θ)

)
= 1
nhκ2

2
E
(
Xk,iXl,i

∫
K̄(s)K̄(sXj,i/Xm,i)dsfY |X(X ′iθ,Xi)

)
+ o((nh)−1)

It also follows from Lyapunov’s central limit theorem and the restrictions on the bandwidth

that, as n → ∞, the joint distribution of the terms
√
nh
(
M̂ θ

jk(θ)− E
(
M̂ θ

jk(θ)
))
, (j, k) ∈

{1, . . . , p}2, converges in distribution to a multivariate normal distribution with the covariance

structure given in the main part of the paper. We also have that M̂u = Mu + OP (n−1/2).

From a first-order Taylor expansion of the inverse of a matrix, we then get that

θ̂u(u) = −M̂ θ(θ̂(u))−1M̂u

= −M̂ θ(θo(u))−1Mu +OP (n−1/2)

= −M θ(θo(u))−1
(
M̂ θ(θo(u))−M θ(θo(u))

)
M θ(θo(u))−1Mu

−M θ(θo(u))−1Mu +OP (n−1/2).

Noting that θuo (u) = −M θ(θo(u))−1Mu, we then obtain the statement of the Theorem if

M̂ θ
jk(θ̂(u)) = M̂ θ

jk(θo(u)) + oP ((nh)−1/2) for all (j, k). (A.1)

To see that (A.1) holds, note that it follows from a simple Taylor expansion that

M̂ θ
jk(θ̂(u))− M̂ θ

jk(θo(u)) = Ĝjk(θ̃(u)) · (θ̂(u)− θo(u)),
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where θ̃(u) is an intermediate value between θo(u) and θ̂(u), and

Ĝjk(θ) = − 1
nhκ2

n∑
i=1

K̄t
h

(
Yi −X ′iθ
Xj,i

)
· Xk,i

Xj,i

X ′i.

with K̄t(t) the first derivative of the kernel function K̄(t). It also follows from standard

results on uniform convergence of kernel-weighted averages (e.g. Newey, 1994; Masry, 1996)

that

sup
θ∈Θ

∣∣∣Ĝjk(θ)−Gjk(θ)
∣∣∣ = OP (h2 + (nh3/ log(n))−1/2),

where Gjk(θ) = M θθ
jk (θ), the derivative of M θ

jk(θ) with respect to θ, is a smooth function of θ.

We then have that

|M̂ θ
jk(θ̂(u))− M̂ θ

jk(θo(u))| ≤
(

sup
θ∈Θ
|Ĝjk(θ)−Gjk(θ)|+ |Gjk(θ̃(u))|

)
|θ̂(u)− θo(u)|

= (OP (h2 + (nh3/ log(n))−1/2) +OP (1)) ·OP (n−1/2) = oP ((nh)−1/2),

with the last equality following from the facts that θ̂(u) = θo(u) +OP (n−1/2), and that h→ 0

and nh2/ log(n)→∞ as n→∞.

A.2. Proof of Theorem 2

The proof of this theorem follows from arguments that are similar to those used to proof

Lemma 1 and Theorem 2, but substantially simpler. We thus omit the details for brevity.

B. SOME RESULTS FOR GENERAL MOMENT CONDITION MODELS

The theoretical results presented in the main body of the paper regarding the properties of

θ̂u(u) are for the special case of a quantile regression or a distribution regression specification.

It is difficult to derive fully analogous results using only the general moment condition setup

described in Section 2 without imposing either abstract regularity conditions that would be

difficult to check, or postulating assumptions that essentially impose the special structure

of QR and DR models. That does not mean, however, that nothing can be said about
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our estimation procedure outside the context of some special cases. In this appendix, we

provide some results regarding the bias and the variance of M̂u(θ, u) and M̂ θ(θ, u) for the

“non-smooth” case, where these estimators are constructed as described in (2.5) or (2.6),

respectively. These results are fully in line with the findings in the main body of the paper.

Lemma 1. Suppose that the function (θ, u) 7→M(θ, u) is three times continuously differen-

tiable over Θ× U , and that the derivatives are uniformly bounded. Then

E(M̂u(θ, u))−Mu(θ, u) = h

2
κ3,h(u)
κ2,h(u)M

uu(θ, u) + h2

6
κ4,h(u)
κ2,h(u)M

uuu(θ, u) + o(h2)

if M̂u(θ, u) is constructed as described in (2.5); and

E(M̂ θ
jk(θ, u))−M θ

jk(θ, u) = h

2
κ3,h(θj)
κ2,h(θj)

M θθ
jk (θ, u) + h2

6
κ4,h(θj)
κ2,h(θj)

M θθθ
jk (θ, u) + o(h2)

if the estimator M̂ θ
jk(θ, u) is constructed as described in (2.6).

The lemma shows that M̂u(θ, u) has a bias of order O(h) for values of u close to the

boundary of the index set U , and, since κ3,h(u) = 0 for u ∈ [u∗ + h, u∗ − h], a bias of order

O(h2) for values of u sufficiently far in the interior of U . A similar statement applies to the

estimator M̂ θ(θ, u). As explained in the main body of the paper, however, in both the QR

and the DR model we can generally chose Θ and U as unbounded sets, so that boundary

bias is not an issue.9

To state a result about the variance, we introduce a definition from Hong, Mahajan, and

Nekipelov (2015). A generic function g(Zi, v) is said to satisfy Lipschitz continuity in mean

square with respect to v if for all ε ∈ R with |ε| sufficiently small there exists a constant C

such that E((g(Zi, v + ε)− g(Zi, v))2) ≤ C|ε|. We then have the following result.

Lemma 2. Suppose that the functions u 7→ mj(Zi, θ, u) and t 7→ mj(Zi, θ + tek, u), where ek
9If one is concerned about boundary bias, one could use a local quadratic instead of a local linear

approximation to estimate either M̂u(θ, u) or M̂θ(θ, u). Results in Fan and Gijbels (1996) suggest that in
this case the bias would be of order O(h2) both in the interior and at the boundary.
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denotes the kth unit vector, are Lipschitz continuous in mean square. Then

V
(
M̂u

j (θ, u)
)

= O((nh)−1) and V
(
M̂ θ

jk(θ, u)
)

= O((nh)−1).

The lemma shows that both variances are of the order O((nh)−1). No distinction for

boundary cases is necessary here. Lipschitz continuity in mean square can easily be shown

to be satisfied in both the DR and the QR model for the respective moment function

functions. Of course, Lemma 1 and 2 taken together imply that if h→ 0 and nh→∞ as

n→∞ both M̂u(θ, u) and M̂ θ(θ, u) are (pointwise) consistent, with a rate of convergence of

OP (h2 + (nh)−1/2) in the interior, and OP (h+ (nh)−1/2) at the boundary.

B.1. Proof of Lemma 1

We only prove the first statement of the Lemma, as the second one follows from the same type

of reasoning. Using the explicit expression of M̂u
j (θ, u) given in the main text, and standard

Taylor expansion arguments commonly used in the kernel smoothing literature, we find that

E(M̂u
j (θ, u)) = 1

hκ2,h(u)

(∫ (u∗−u)/h

(u∗−u)/h
Mj(θ, u+ vh)vK(v)dv −Mj(θ, u)κ1,h(u)

)

= 1
hκ2,h(u)

(
Mu

j (θ, u)hκ2,h(u) + 1
2M

uu
j (θ, u)h2κ3,h(u)

+1
6M

uuu
j (θ, u)h3κ4,h(u) + o(h3)

)
= Mu

j (θ, u) + h

2M
uu
j (θ, u)κ3,h(u)

κ2,h(u) + h2

6 M
uuu
j (θ, u)κ4,h(u)

κ2,h(u) + o(h2),

as claimed.

B.2. Proof of Lemma 2

We again only prove the first statement of the Lemma, as the second one follows from the

same type of reasoning. Using the explicit expression of M̂u
j (θ, u) given in the main text, it

follows an application of Cauchy-Schwarz, Lipschitz continuity in mean square, and the same
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arguments as those in the proof of Lemma 1, that for h sufficiently small

V
(
M̂u

j (θ, u)
)

= 1
nh2κ2,h(u)2

E

∫ u∗−u

h

u∗−u
h

(mj(Zi, θ, u+ vh)−mj(Zi, θ, u)) vK(v)dv
2


−

E
∫ u∗−u

h

u∗−u
h

(mj(Zi, θ, u+ vh)−mj(Zi, θ, u)) vK(v)dv
2


≤ 1
nh2κ2,h(u)2E

(∫ (u∗−u)/h

(u∗−u)/h
(mj(Zi, θ, u+ vh)−mj(Zi, θ, u))2 v2K(v)2dv

)

+O(n−1)

≤ C

nhκ2,h(u)2

∫ u∗−u
h

u∗−u
h

|v|3K(v)2dv +O(n−1)

= O((nh)−1),

as claimed.
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Table 1: Simulation results using new estimator for the QR model
Bias Variance MSE

u n h θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u)
.5 1000 0.5 -0.180 -0.001 0.490 1.038 0.522 1.038

0.7 -0.110 0.022 0.328 0.706 0.340 0.707
0.9 -0.053 0.044 0.267 0.523 0.270 0.525
1.1 -0.010 0.077 0.208 0.415 0.208 0.421
1.3 0.044 0.093 0.174 0.328 0.176 0.336
1.5 0.089 0.130 0.147 0.267 0.155 0.283
1.7 0.131 0.165 0.128 0.224 0.145 0.251
2.0 0.208 0.221 0.114 0.182 0.157 0.231
3.0 0.490 0.485 0.080 0.104 0.320 0.339

.5 4000 0.5 -0.028 0.010 0.121 0.245 0.122 0.245
0.7 0.003 0.022 0.084 0.170 0.084 0.171
0.9 0.026 0.048 0.063 0.127 0.064 0.130
1.1 0.057 0.068 0.052 0.097 0.055 0.102
1.3 0.097 0.094 0.042 0.080 0.052 0.089
1.5 0.133 0.129 0.037 0.067 0.055 0.083
1.7 0.171 0.167 0.032 0.056 0.061 0.084
2.0 0.246 0.227 0.027 0.045 0.087 0.097
3.0 0.522 0.486 0.019 0.026 0.292 0.262
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Table 2: Simulation results using smoothed quantile regression coefficients
Bias Variance MSE

u n h θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u)
.5 1000 0.05 0.011 0.010 0.794 2.297 0.794 2.298

0.10 0.030 0.021 0.368 1.053 0.369 1.053
0.15 0.057 0.047 0.236 0.678 0.239 0.680
0.20 0.099 0.084 0.172 0.497 0.182 0.504
0.25 0.155 0.137 0.135 0.390 0.159 0.409
0.30 0.228 0.209 0.111 0.319 0.163 0.363
0.35 0.325 0.305 0.095 0.272 0.200 0.365
0.40 0.453 0.433 0.083 0.239 0.289 0.426
0.50 0.922 0.892 0.072 0.204 0.921 1.000

.5 4000 0.05 0.006 0.002 0.196 0.559 0.196 0.559
0.10 0.022 0.018 0.090 0.256 0.091 0.256
0.15 0.050 0.044 0.058 0.163 0.060 0.165
0.20 0.091 0.085 0.042 0.118 0.050 0.125
0.25 0.147 0.141 0.033 0.092 0.054 0.112
0.30 0.220 0.214 0.027 0.076 0.075 0.122
0.35 0.316 0.311 0.023 0.065 0.123 0.162
0.40 0.443 0.440 0.020 0.057 0.217 0.251
0.50 0.909 0.903 0.017 0.049 0.843 0.865
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Table 3: Simulation results using augmented quantile regression
Bias Variance MSE

u n h θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u) θ̂uo,0(u) θ̂uo,1(u)
.5 1000 0.05 0.035 -0.321 0.776 2.182 0.778 2.285

0.10 0.043 -0.146 0.372 1.047 0.373 1.069
0.15 0.067 -0.064 0.241 0.685 0.245 0.689
0.20 0.104 0.003 0.178 0.509 0.188 0.509
0.25 0.155 0.071 0.142 0.406 0.166 0.411
0.30 0.220 0.148 0.119 0.339 0.167 0.361
0.35 0.302 0.238 0.103 0.295 0.194 0.351
0.40 0.401 0.345 0.092 0.263 0.253 0.382
0.50 0.672 0.624 0.081 0.231 0.533 0.620

.5 4000 0.05 0.013 -0.083 0.190 0.535 0.190 0.542
0.10 0.025 -0.024 0.090 0.254 0.091 0.255
0.15 0.052 0.017 0.059 0.164 0.061 0.164
0.20 0.091 0.064 0.043 0.121 0.051 0.125
0.25 0.143 0.120 0.034 0.096 0.055 0.111
0.30 0.209 0.189 0.029 0.080 0.072 0.116
0.35 0.290 0.274 0.025 0.070 0.109 0.145
0.40 0.390 0.377 0.022 0.063 0.175 0.205
0.50 0.661 0.650 0.020 0.056 0.456 0.479
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