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Abstract

In this paper, we study the structure of the composition effect, that is the part of

the observed between-group difference in the distribution of some economic outcome

that can be explained by differences in the distribution of covariates. Using results

from copula theory, we derive a new representation that contains three types of com-

ponents: (i) the “direct contribution” of each covariate due to between-group dif-

ferences in the respective marginal distributions, (ii) several “two way” and “higher

order interaction effects” due to the interplay between two or more marginal dis-

tributions, and (iii) a “dependence effect” accounting for between-group differences

in dependence patterns among the covariates. We show how these components can

be estimated in practice, and use our method to study the evolution of the wage

distribution in the US between 1985 and 2005. We obtain some new and interesting

empirical findings. For example, our estimates suggest that the dependence effect

alone can explain about one fifth of the increase in wage inequality over that period

(as measured by the difference between the 90% and the 10% quantile).
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1. Introduction

Understanding the factors accounting for the differences in the distributions of individu-

als’ economic outcomes across two countries, time periods, or subgroups of the population

is central in several fields of economic research, particularly in labor and development eco-

nomics. For instance, the question why wage inequality has increased substantially in the

US and other industrialized countries over the past decades has received enormous atten-

tion in the recent literature. Other examples include the study of the gender wage gap,

wage differentials between natives and immigrants, and variations in health outcomes

across several developing regions. The distributional aspect is often critical in these ap-

plications. Comparing real hourly wages among male US workers in 1985 and 2005, for

example, one can observe that the median wage has remained approximately constant,

but that the 90% and 10% quantile have increased by about 20% and 5%, respectively.

There has thus been a substantial change in the overall shape of the wage distribution,

which would not be revealed by a simple comparison of means.

With such applications in mind, a number of papers have proposed procedures to de-

compose between-group differences in economic outcomes into two components: a com-

position effect due to differences in observable covariates across groups, and a structure

effect due to differences in the relationship that links the covariates to the outcome. The

most popular example is certainly the Oaxaca-Blinder procedure (Oaxaca, 1973; Blinder,

1973) for decomposing differences in mean outcomes when the data are generated by a

simple linear model. More flexible methods that can be used to decompose general distri-

butional features like quantiles or inequality measures, and allow for complex nonlinear

relationships between the covariates and the outcome variable are proposed and studied

by DiNardo, Fortin, and Lemieux (1996), Gosling, Machin, and Meghir (2000), Donald,

Green, and Paarsch (2000), Barsky, Bound, Charles, and Lupton (2002), Machado and

Mata (2005), Melly (2005), Rothe (2010), and Chernozhukov, Fernandez-Val, and Melly

(2013), among others. See Fortin, Lemieux, and Firpo (2011) for a literature review.

A natural question in empirical applications is whether the composition effect can be

further decomposed into contributions attributable to specific covariates. For example, it

could be interesting to know what portion of the composition part of the wage gap between
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natives and immigrants can be attributed to between-group differences in education.

Further decompositions of between-group differences in mean outcomes can be obtained

via the Oaxaca-Blinder procedure when the data are generated by a linear model. For

more general settings, alternative further decompositions have been proposed and studied

by e.g. DiNardo et al. (1996), Altonji, Bharadwaj, and Lange (2012), or Chernozhukov

et al. (2013), amongst many others. These methods are generally path dependent, in the

sense that their results depend on the order of the covariates in the data set, which can be

undesirable in many applications where there is no natural order among the covariates.

More importantly, the elements of these further decompositions typically measure the

contribution of between-group differences in the conditional distribution of a covariate

given the remaining ones, and can thus not be interpreted as reflecting between-group

differences in a single, specific covariate.

It turns out that it is not possible to develop a general method that apportions the

composition effect into components that are only attributable to between-group differ-

ences in the marginal distribution of specific covariates in such a way that these com-

ponents add up to the full composition effect. This is because most commonly used

distributional features other than the mean, such as the variance, quantiles, or inequality

measures, are nonlinear transformations of the distribution of the outcome variable, and

are thus not additively separable in the marginal distributions of the covariates. Instead,

they typically contain “interaction terms” that stem from the interplay of two or more

covariates’ marginal distributions, and are also influenced by between-group differences

in the dependence patterns among the covariates. This is generally true even if the under-

lying data generating process does not contain any interaction terms itself. For example,

when the data are generated by a simple linear model, between-group differentials in the

outcomes’ variances can be due to between-group differences in covariances among the ex-

planatory variables. Since the covariance of two random variables is the product of their

respective standard deviations and the correlation coefficient, it depends on features of

both covariates’ marginal distributions, and on the dependence structure between them.

Such terms can not be apportioned unambiguously to specific covariates.

The main contribution of this paper is to derive a new decomposition of the composi-

tion effect that explicitly takes these issues into account. In particular, the decomposition
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contains three types of components: (i) the “direct contribution” of each covariate due to

between-group differences in the respective marginal distributions, (ii) several “two way”

and “higher order interaction effects” due to the interplay between two or more marginal

distributions, and (iii) a “dependence effect” accounting for different dependence patterns

among the covariates. We show that such a decomposition is well-defined in a general

setting by using results from copula theory (e.g. Nelsen, 2006) and arguments related to

those in Rothe (2012). Under suitable exogeneity conditions, these components can all be

interpreted in terms of economically meaningful counterfactual experiments that change

the joint distribution of the covariates to a hypothetical one that shares properties of

both groups (Rothe, 2012).

To gain a better understanding of the empirical content of our decomposition, it is

useful to consider a simple example. Suppose that we study the populations of workers

in countries A and B, that our outcome variable is the hourly wage, and that there are

two covariates: the worker’s age and an indicator for union coverage. To be concrete, also

suppose that population A tends to be older and more unionized, and that union coverage

is more attractive for relatively old workers in population A than it is in population B.

Then the composition effect is the part of the wage gap between the two populations

that can be explained by these differences in observable characteristics. The first “direct

contribution” is then the part of the composition effect that can be attributed to the

fact that population A tends to be older. The second “direct contribution” accounts for

population A having higher unionization rates. The (only) “interaction effect” measures

the additional contribution of the fact that the population A is both more unionized and

older. Finally, the “dependence effect” captures the fact that the relative age composition

of union-covered and non-union-covered workers differs in the two populations.

An attractive feature of our decomposition is that it reduces to the Oaxaca-Blinder

procedure for the special case of the mean of the outcome in a linear regression model.

It can thus be understood as a natural extension of this method to nonlinear models

and general distributional features. We also show in this paper that the elements of

our decomposition are conceptually easy to estimate in a flexible parametric framework,

requiring only standard statistical methods to estimate copula functions and conditional

CDFs. The asymptotic variance of these estimates generally has a complicated form, but
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valid standard errors can be computed via a classical bootstrap approach.

As an additional contribution, we also apply our new methodology to study the evo-

lution of the wage distribution among male workers in the United Stated between 1985

and 2005. There is now extensive evidence that during this period wage inequality in the

United States has been rising substantially in the top end of the wage distribution, but

has slightly decreased in the bottom end, leading to what is often called a polarization of

the US labor market (Autor, Katz, and Kearney, 2006; Lemieux, 2008). Our methodol-

ogy delivers some new and interesting insights into this issue. For example, our estimates

suggest that our dependence effect, which has no analogue in other methods, accounts for

about one fifth of the increase in wage inequality (as measured by the difference between

the 90% and the 10% quantile) that occurred over the two decades, and about one fourth

of the composition effect. This dependence effect captures for example changes in the

positions of unionized and non-unionized workers in the age distribution.

It should be stressed that our focus in this paper is exclusively on a decomposition of

the composition effect. We do not address the related issue of deriving a decomposition

of the structure effect, i.e. dividing between-group differences in the structural functions

that link the covariates and the outcome variable into components that can be attributed

to individual covariates. Such a task already faces conceptional difficulties in simple

linear models with discrete covariates, and does not seem possible for general nonlinear

structural functions with interactions between the covariates.

The remainder of the paper is structured as follows. In the next section, we introduce

a general setting for studying structure and composition effects, and illustrate the concep-

tional difficulties for decomposing the composition effect through a simple example. In

Section 3, we describe our new decomposition based on copulas. Section 4 compares our

approach to other approaches that have been proposed in the literature. Section 5 shows

how to estimate the elements of our decomposition in practice, and Section 6 derives the

asymptotic properties of these estimators. Section 7 contains an empirical application to

wage data from the US. Finally, Section 8 concludes. Some proofs and more extensive

calculations are given in the Appendix.

5



2. Structure and Composition Effects

2.1. General Setup. We consider a population with two non-overlapping subgroups

indexed by g ∈ {0, 1}. For any individual in group g, we observe an outcome variable Y g

and a d-dimensional vector of observable characteristics Xg, with corresponding distribu-

tion functions F g
Y and F g

X , support Yg and X g, and conditional CDF F g
Y |X , respectively.

Furthermore, for any CDF F we refer to objects of the form ν(F ) as a distributional

feature, where ν : F → R is a functional from the space of all one-dimensional distri-

bution functions to the real line. Examples of distributional features include the mean,

with ν : F 7→
∫
ydF (y), and the τ -quantile, with ν : F 7→ F−1(τ), but also higher-order

centered or uncentered moments, quantile-related statistics like interquantile ranges or

quantile ratios, and inequality measures such as the Gini coefficient. Our aim is to un-

derstand how the observed difference

∆ν
O = ν(F 1

Y )− ν(F 0
Y )

between the distributional features ν(F 1
Y ) and ν(F 0

Y ) is related to differences between the

distributions F 1
X and F 0

X . To this end, we define a counterfactual outcome distribution

F
g|j
Y that combines the conditional distribution in group g with the covariate distribution

in group j 6= g:

F
g|j
Y (y) =

∫
F g
Y |X(y, x)dF j

X(x). (2.1)

This integral is well-defined as long as Xj ⊂ Xg. We interpret F
g|j
Y as the distribution

of outcomes after a counterfactual experiment in which the distribution of observable

characteristics in group g is changed from F g
X to F j

X , but the conditional distribution of

the outcome given these characteristics remains constant. With the notation (2.1), one

can decompose the observed between-group differential ∆ν
O as

∆ν
O = ∆ν

S + ∆ν
X (2.2)

where

∆ν
S = ν(F 1

Y )− ν(F
0|1
Y ) and ∆ν

X = ν(F
0|1
Y )− ν(F 0

Y ).

Here ∆ν
X is a composition effect, solely due to differences in the distribution of the co-

variates between the two groups, and ∆ν
S is a structure effect, solely due to differences
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in the conditional CDFs F 1
Y |X and F 0

Y |X . This definition of structure and composition

effects has been widely used in the literature (e.g. DiNardo et al., 1996; Machado and

Mata, 2005; Rothe, 2010; Chernozhukov et al., 2013, among many others). We note that

the order in which differences in conditional CDFs and the covariate distributions are

considered when defining ∆ν
X and ∆ν

S has to be taken into account when interpreting the

parameters in practice.

To give a concrete example that fits our setting, suppose that group 0 and 1 are the

population of male workers in 1985 and 2005, respectively, Y g is an individual’s wage

in constant 1985 dollars, Xg are observable characteristics that are relevant on the job

market, and ν is some measure of inequality. In this case, the conditional CDF F g
Y |X

summarizes the wage schedule given the worker’s observable characteristics in period

g, and F
g|j
Y is the counterfactual distribution of wages that would have prevailed if the

distribution of workers’ characteristics in period g would have been the same as in period

j. Moreover, ∆ν
X and ∆ν

S quantify to what extent changes in wage inequality over time,

as measured by ∆ν
O, can be attributed to the evolution of workers’ characteristics and

changes in the wage schedule, respectively.

Note that the structure and composition effects and can be given a causal inter-

pretation under an (arguably strong) exogeneity conditions on the covariates. Specifi-

cally, suppose that the outcome variable is generated through the nonseparable model

Y g = mg(Xg, ηg) for g ∈ {0, 1}, where ηg ∈ Rdη is an unobserved error term and mg is

the structural function. Now if ηg is independent of Xg then for any d-dimensional CDF

G we can interpret the function HG(y) =
∫
F g
Y |X(y, x)dG(x) as the CDF of the counter-

factual random variable mg(Z, ηg), where Z ∼ G is a d-dimensional random vector that

is independent of ηg.

2.2. Problems for Decomposing the Composition Effect. When the data con-

tain information about several individual characteristics, it is natural to ask which role

between-group differences in each one of them play in determining the composition effect.

For example, one could be interested to which extent the composition part of the change

in wage inequality from 1985 to 2005 can be attributed to the decline in unionization, the

change in the distribution of workers’ age, etc. Such questions can easily be addressed
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for the mean of the outcome variable in a simple linear model by the Oaxaca-Blinder

procedure, which certainly contributes to the popularity of the method. This method

does not apply, however, to other distributional features such as quantiles or variances,

or more complex relationships between the outcome and the covariates.

It would thus be desirable to have a methodology that is able to apportion the com-

position effect into components attributable to between-group differences in the marginal

distribution of each covariate in the general setting described above. However, it is clear

that such a decomposition does generally not exist when the distributional feature of in-

terest is a nonlinear transformation of the CDF of the outcome variable. This is the case

for essentially all features commonly used in empirical applications, with the exception

of the mean. These nonlinearities create issues even for simple data generating processes

like linear models. To see this, consider the following simple example. Suppose that in

both groups, i.e. for any g ∈ {0, 1}, the data are generated as Y g = Xg
1 +Xg

2 + ηg, where

Xg ∼ N(µg,Σg) is bivariate normal with

µg =

 µg1

µg2

 and Σg =

 σ2
g1 ρgσg1σg2

ρgσg1σg2 σ2
g2

 ,

and ηg ∼ N(0, 1) is independent of Xg. Since the structural function is the same in both

groups, we clearly have that ∆ν
S = 0 for any functional ν, and thus any difference in the

distribution of Y1 and Y0 reflects a composition effect. For instance, if ν(F g
Y ) = Var(Y g)

we have that ∆ν
X = Var(Y1)− Var(Y0) with Var(Y g) = 1 + σ2

g1 + σ2
g2 + 2ρgσg1σg2. When

ν(F g
Y ) = Qg

Y (τ) is the τ -quantile of the distribution of Y g, we find that ∆ν
X = Q1

Y (τ) −

Q0
Y (τ) with Qg

Y (τ) = µg1 + µg2 + Φ−1(τ)
√

1 + σ2
g1 + σ2

g2 + 2ρgσg1σg2 and Φ the CDF of

the standard normal distribution. In both cases, the object of interest is not additively

separable in the parameters (µg1, σ
2
g1) and (µg2, σ

2
g2), which characterize the covariates’

marginal distributions in this example. Moreover, in both cases the object of interest

depends on the value of the correlation coefficient ρg, which determines the dependence

structure among the covariates here.
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3. Characterizing the Composition Effect using Copulas

3.1. Preliminaries. It turns out that the simple example in Section 2.2 illustrates

a general property of the composition effect: it is usually not possible to express the

composition effect as a sum of terms that each depend on the marginal distributions of

a single covariate only. Instead, an explicit expression of the composition effect in terms

of the respective marginal covariate distributions typically contains “interaction terms”

resulting from the interplay of two or more marginal distributions, and also “dependence

terms” resulting from between-group difference in the dependence pattern among the

covariates.

To formally show this point, we use results from copula theory that allow us to

disentangle the covariates’ marginal distributions from the dependence structure among

them. In particular, it follows from Sklar’s Theorem (Sklar, 1959; Nelsen, 2006, Theorem

2.3.3) that the CDF of Xg can always be written as

F g
X(x) = Cg(F g

X1
(x1), . . . , F g

Xd
(xd)) for g ∈ {0, 1}, (3.1)

where Cg is a copula function, i.e. a multivariate CDF with standard uniformly distributed

marginals, and F g
Xk

is the marginal distribution of the kth component of Xg. The copula

describes the joint distribution of individuals’ ranks in the various components of Xg,

and can be interpreted as the object that determines the dependence structure.

To ensure that the definition of Cg is unique on its entire domain [0, 1]d, we assume

that the covariates Xg can be represented as Xg = t(X̃g) = (t1(X̃g
1 ), . . . , td(X̃

g
d )) for some

continuously distributed random vector X̃g and a function t(·) that is weakly increasing

in each of its arguments. For example, if the lth component of Xg is binary, we could have

Xg
l = I{X̃g

l > cl} = tl(X̃
g
l ) for some constant cl. If the lth component is continuously

distributed, one can simply put tl as the identity mapping. With such a structure, Cg

can be uniquely defined on [0, 1]d as the copula function of the joint CDF of the latent

variables X̃g. While this construction uniquely defines Cg on [0, 1]d, it does of course not

ensure that Cg is point identified on [0, 1]d from the distribution of Xg alone when some

of the covariates are discrete. We return to this issue in Section 3.4 below.

The representation (3.1) can be used to define counterfactual outcome distributions

that combine the conditional distribution in group g with hypothetical covariate distribu-
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tions that share properties of both F 1
X and F 0

X . Denoting any element of the d-dimensional

product set {0, 1}d by a boldface letter, we define the distribution of the outcome in a

counterfactual setting where the structure is as in group g, the covariate distribution has

the copula function of group j, and the marginal distribution of the lth covariate is equal

to the that in group kl by

F
g|j,k
Y (y) =

∫
F g
Y |X(y, x)dF j,k

X (x) (3.2)

with

F j,k
X (x) ≡ Cj(F k1

X1
(x1), . . . , F kd

Xd
(xd)).

Following the discussion at the end of Section 2.1, under suitable exogeneity conditions

this distribution can be interpreted as the one of the outcome variable in a counterfactual

in which the distribution of the covariates is exogenously shifted such that its new CDF

is equal to F j,k
X . We also write 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0), denote by el the

lth unit vector, i.e. the d-dimensional vector whose lth component is equal to one and

whose remaining components are equal to zero, and put |k| =
∑d

l=1 kl. Next, for any

distributional feature ν we define the parameter

βν(k) = ν(F
0|0,k
Y )− ν(F 0

Y ),

which can be interpreted as the effect of a counterfactual experiment conducted in group

0 that changes the respective marginal distribution of those |k| covariates for which kl = 1

to their corresponding counterpart in group 1, while holding everything else (including

the dependence structure among the covariates) constant. Note that the term βν(el) is an

example of a Fixed Partial Distributional Policy Effects (FPPE) as introduced in Rothe

(2012). Finally, we define

∆ν
M(k) = βν(k) +

∑
1≤|m|≤|k|−1

(−1)|k|−|m|βν(m),

with the empty sum equal to zero, so that e.g. ∆ν
M(el) = βν(el). This notation will

simplify the exposition below.

3.2. A Simple Example with Two Covariates. Before giving a general formula for

our decomposition, it is instructive to first consider a simplified version where the vector
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of explanatory variables Xg has only two components, that is d = 2. In this case, we can

rewrite the composition effect as follows:

∆ν
X = ∆ν

M(e1) + ∆ν
M(e2) + ∆ν

M(1) + ∆ν
D (3.3)

where

∆ν
D = ν(F

0|1,1
Y )− ν(F

0|0,1
Y ) and ∆ν

M(1) = βν(1)− βν(e1)− βν(e2).

The representation (3.3) conveys a number of insights into the structure of the composi-

tion effect. First, the terms ∆ν
M(e1) and ∆ν

M(e2) can be interpreted as the direct contribu-

tion of between-group differences in the marginal distribution of the 1st and 2nd covariate

to the composition effect, respectively. Second, the term ∆ν
M(1) can be interpreted as

an interaction effect: while βν(1) measures the joint contribution of between-group dif-

ferences in the marginal covariate distribution of between the two groups, subtracting

βν(e1) and βν(e2) provides an adjustment for the direct contribution of the 1st and 2nd

covariate, thus leading to the interpretation of ∆ν
M(12) as a “pure” interaction effect.

Third, the term ∆ν
D is a dependence effect that captures the contribution between-group

differences in the covariates’ copula functions. As a further illustration, in Appendix B

we explicitly calculate the components of (3.3) for the simple setting described in Sec-

tion 2.2. An example how these terms can be interpreted in an empirical context was

given in the introduction of this paper.

3.3. A General Decomposition. We now describe a general decomposition of the

composition effect for high-dimensional settings, which is the main contribution of this

paper. As a first step, the composition effect ∆ν
X can be decomposed into a dependence

effect ∆ν
D resulting from between-group differences in the copula functions, and a to-

tal marginal distribution effect ∆ν
M resulting from differences in the marginal covariate

distributions across the two groups:

∆ν
X = ∆ν

D + ∆ν
M (3.4)

where

∆ν
D = ν(F

0|1,1
Y )− ν(F

0|0,1
Y ) and ∆ν

M = ν(F
0|0,1
Y )− ν(F

0|0,0
Y ).
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Note that the order in which differences in the copula and the marginal CDFs are con-

sidered when defining ∆ν
D and ∆ν

M has to be taken into account when interpreting the

parameters in practice.

In a second step, we further decompose the total marginal distribution effect ∆ν
M into

several partial marginal distribution effects ∆ν
M(k), which account for between-group

differences in the marginal distributions of one or several covariates:

∆ν
M =

∑
1≤|k|≤d

∆ν
M(k).

Note that the order of the covariates in the data set has no impact on the numerical value

of each of the ∆ν
M(k), and that these terms have been carefully defined in the previous

section in order to avoid counting certain contributions more than once.

Taken together the various terms we just introduced, our full decomposition of the

composition effect is given by

∆ν
X =

∑
1≤|k|≤d

∆ν
M(k) + ∆ν

D. (3.5)

In case |k| = 1, i.e. when k = el is the lth unit vector, the interpretation of ∆ν
M(el)

is, as described above, that of a direct contribution of between-group differences in the

marginal distribution of the lth covariate to the composition effect. For any vector k with

|k| > 1, the terms ∆ν
M(k) capture the contributions to the composition effect of “|k|-way

interaction effects” between the marginal distributions for which respective component

of k is equal to one.

It should be stressed that the decomposition (3.5) is not merely a statistical identity.

As discussed in Section 2.1, under a suitable exogeneity condition on the covariates the

terms ∆ν
D and ∆ν

M(el) for l ∈ {1, . . . , d} are all direct summary measures of the outcome

of well-defined counterfactual experiments, namely that of a ceteris paribus change in

the copula function or the lth marginal distribution, respectively. The terms of the form

∆ν
M(k) with |k| > 1 arise from a comparison of the outcomes of several counterfactual

experiments that all involve ceteris paribus changes of two or more covariates’ marginal

distributions. Thus all elements of the decomposition (3.5) can be interpreted in terms

of empirically meaningful counterfactual experiments.

12



3.4. Identification. It is easy to see that the elements of the decomposition (3.5) are

well-defined as long as the support of X1 is contained in the support of X0, i.e. X1 ⊂ X0.

When some of the covariates are discrete, however, one generally requires further condi-

tions on the data generating process in order to point-identify these quantities from the

distribution of the observables. This is because the data identify the the copula function

C0 on the range of the respective marginal distribution functions of the components of

X0 only. There could thus be several copula functions C̃ that satisfy the relationship

F 0
X(x) = C̃(F 0

X1
(x1), . . . , F 0

Xd
(xd)) for all x ∈ Rd if some of the components of X0 are dis-

crete (Nelsen, 2006). As a consequence, there might be no one-to-one mapping between

the distribution of observables and the counterfactual distributional features of the form

ν(F
0|0,s
Y ) with s ∈ {0, 1}d, which are required for computing our decomposition. Note

that this is not an issue if all covariates are continuously distributed.

In the presence of discrete covariates, one way to achieve point identification of the

elements of the decomposition is by imposing certain parametric restrictions on the func-

tional form of the copula. These restrictions can be very mild though, and still allow for

a wide rage of practically relevant dependence patterns. One might be willing to assume,

for example, that C0 belongs to the family of Gaussian copulas, or some other family that

satisfies a weak regularity condition that we state below. By making such an assumption,

one reduces the class of values that C0 could potentially take such that it can be uniquely

determined from the distribution of observables among the remaining candidates. The

following proposition formalizes this argument.

Proposition 1. Suppose that X1 ⊂ X0, and that either of the following conditions hold:

(i) The distribution function F 0
X is continuous.

(ii) The copula function C0 = Cθ0 is contained in the parametric class {Cθ, θ ∈ Θ ⊂

Rk}, and it holds that P (Cθ(U0) 6= Cθ0(U0)) > 0 for U0 = (F 0
X1

(X1,0), . . . , F 0
Xd

(Xd,0))

and all θ ∈ Θ \ {θ0}.

Then all terms in (3.5) are point-identified.

The statement of the proposition follows from elementary properties of copula func-

tions (e.g. Nelsen, 2006) under condition (i), and from standard arguments for identifica-
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tion of parametric models (e.g. Newey and McFadden, 1994) under condition (ii). The for-

mer condition is obviously straightforward to verify, and the latter condition has testable

implications. If the parametric family of copula functions is such that Cθ(u) 6= Cθ′(u)

for all u ∈ (0, 1)d and all θ 6= θ′, then condition (ii) necessarily holds. This stronger

sufficient condition can be shown to be fulfilled by most common parametric families of

copula functions, such as e.g. the Gaussian, Clayton, or Frank family. In the absence of

parametric restrictions, one could conduct a partial identification analysis similar to the

one in Rothe (2012), and derive upper and lower bounds on the elements of the decompo-

sition (3.5). Whether or not these bounds would be sufficiently narrow to be informative

in an empirical setting depends on the details of the respective application.

4. Relationship to other Approaches

In this section, we compare our copula decomposition to several related approaches that

have been proposed in the literature. We consider the classical Oaxaca-Blinder procedure,

methods based on so-called sequential conditioning arguments, and a method based on

RIF regression that was recently proposed by Firpo, Fortin, and Lemieux (2007; 2013).

4.1. Decompositions based on Linear Models. One important property of the de-

composition (3.5) is that it encompasses the popular Oaxaca-Blinder procedure (Oaxaca,

1973; Blinder, 1973) as a special case. Suppose that the data are generated as

Y g = βg0 +
d∑
l=1

Xg
l β

g
l + ηg with E(ηg|Xg) = 0,

and the expectation is the distributional feature of interest, i.e. ν(F g
Y ) = E(Y g). Then it

is straightforward to verify that the elements of our decomposition take the form

∆E
M(el) = (E(X1

l )− E(X0
l ))β0

l , ∆E
M(k) = 0 for k 6= el and ∆E

D = 0.

Our decomposition can thus be understood as a natural generalization of the Oaxaca-

Blinder procedure to nonlinear DGPs and general features of the outcome distribution.

Note that in this particular case the composition effect can be apportioned unambiguously

into contributions attributable each covariate as the additive separability of covariates in
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the data generating process is preserved by the linearity of the functional F 7→
∫
ydF (y)

that maps a CDF into the corresponding expectation.

4.2. Decompositions based on Sequential Conditioning Arguments. Our de-

composition does generally not encompass methods that are based on sequential con-

ditioning arguments, such as those proposed by DiNardo et al. (1996), Machado and

Mata (2005), Altonji et al. (2012) or Chernozhukov et al. (2013), for example. These

approaches write the composition effect as a sum of terms that reflect changes in the

conditional distribution of one covariate given the remaining ones. That is, they start

with the representation

F g
Y (y) =

∫
F g
Y |X(y|x)dF g

X1|X−1
(x1|x−1)dF g

X2|X−2
(x2|x−2) . . . dF g

Xd
(xd),

where a−k denotes the subvector of a that excludes its first k components, and consider

counterfactual distributions obtained by exchanging the various conditional covariate

distributions with their counterparts in the other group. As argued in Rothe (2012), such

terms cannot be interpreted as the impact of between-group differences in the marginal

distribution of particular covariates. In contrast to our method, these decompositions

are also path dependent, in the sense that they depend on the order of the components of

Xg. This property can be undesirable in applications where there is no natural sequential

order for the covariates.

4.3. Decompositions based on RIF Regressions. Our approach is related to the

RIF decomposition that was recently proposed in Firpo et al. (2007; 2013). To explain

the connection, assume for a moment that all covariates are continuously distributed. Let

RIF (Y g, ν) be the recentered influence function (Van der Vaart, 2000) of ν(F g
Y ), and let

hg,ν(x) ≡ E(RIF (Y g, ν)|Xg = x)

be its conditional expectation function given Xg. Now define

γg,ν = E(∂xh
g,ν(Xg)) and γ̄g,ν = E(XgXg ′)−1E(XgRIF (Y g, ν)),

which are the corresponding average derivative and the coefficients of a linear projection

of RIF (Y g, ν) onto Xg, respectively. The latter can be understood as an approximation
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to γg,ν that is easier to estimate in practice. The RIF decomposition of the composition

effect is then given by

∆ν
X =

d∑
l=1

∆ν
M,RIF (l) + ∆ν

E,RIF

where

∆ν
M,RIF (l) ≡ γ̄0,ν

l (E(X1
l )− E(X0

l ))

is interpreted as the contribution of the lth covariate and ∆ν
E,RIF is a residual term that

is supposed to catch various types of misspecification.

Firpo, Fortin, and Lemieux (2009) show that the components of γg,ν measure the

effect of infinitesimal location shifts in the marginal distribution of the corresponding

component of Xg on ν(F g
Y ), holding everything else (including the copula) constant. The

terms ∆ν
M,RIF (l) can thus be seen as “first order” approximations to our ∆ν

M(el) along a

particular path in the space of potential covariate distributions, namely the one described

by a location shift in the lth margin. This approximation should be adequate if (i) the

distribution of X1
l is close to a location-shifted version of the distribution of X0

l , (ii) the

location difference E(X1
l ) − E(X0

l ) is small, and (iii) γ̄0,ν
l is close to γ0,ν

l . If one of these

three conditions is violated then ∆ν
M,RIF (l) can differ from ∆ν

M(el) by a potentially large

amount.

In cases where the approximation is inaccurate, the elements of the RIF decomposition

do generally not correspond to meaningful population quantities. For example, suppose

that the distribution of X1
l and X0

l have the same mean but different variances, and

are thus not location-shifted versions of each other. Then ∆ν
M,RIF (l) is clearly equal to

zero by construction even though the lth covariate should in general contribute to the

composition effect for any distributional feature ν that is affected by the spread of the

covariate distribution. Note that checking whether the residual ∆ν
E,RIF is small does not

ensure the accuracy of the RIF approximation since it is easy to construct examples where

∆ν
E,RIF = 0 but ∆ν

M,RIF (l) differs from ∆ν
M(el) for all l by an arbitrarily large amount.

5. Model Specification and Estimation

In this section, we explain how our detailed decomposition (3.4)–(3.5) can be estimated

in practice. We focus on flexible parametric specifications, which can be estimated using
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standard statistical techniques. Recall that for any distributional feature ν the observed

difference ∆ν
O, the structure effect ∆ν

S, the dependence effect ∆ν
D, and the various partial

marginal distribution effects ∆ν
M(k) can all be expressed in terms of objects of the form

ν(F
g|j,k
Y ), where

F
g|j,k
Y (y) =

∫
F g
Y |X(y, x)dCj(F k1

X1
(x1), . . . , F kd

Xd
(xd))

as defined in equation (3.2). To obtain estimates of the elements of our decomposition, we

can therefore use a plug-in approach and replace the terms ν(F
g|j,k
Y ) at every occurrence

with their sample counterparts ν(F̂
g|j,k
Y ), where

F̂
g|j,k
Y (y) =

∫
F̂ g
Y |X(y, x)dĈj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd)), (5.1)

with F̂ g
Y |X , Ĉg and F̂ g

Xl
being suitable estimates of the conditional CDF F g

Y |X , the copula

function Cg, and the marginal CDFs F g
Xl

of the lth component of Xg, for g ∈ {0, 1} and

m ∈ {1, . . . , d}, respectively. That is, our estimates are given by

∆̂ν
O = ν(F̂

1|1,1
Y )− ν(F̂

0|0,0
Y ), ∆̂ν

S = ν(F̂
1|1,1
Y )− ν(F̂

0|1,1
Y ),

∆̂ν
X = ν(F̂

0|1,1
Y )− ν(F̂

0|0,0
Y ), ∆̂ν

D = ν(F̂
0|1,1
Y )− ν(F̂

0|0,1
Y ), and

∆̂ν
M(k) = ν(F̂

0|0,k
Y )− ν(F̂

0|0,0
Y ),

for any distributional feature ν. The integral on the right-hand side of equation (5.1)

can be approximated numerically through any of the many standard methods available

in commonly used software packages.

We assume that the data available to the econometrician consists of two i.i.d. samples

{(Y g
i , X

g
i )}ngi=1 of size ng from the distribution of (Y g, Xg) for g ∈ {0, 1}. In such a

classical cross-sectional setting, estimates of the just-mentioned unknown functions can

in principle be obtained by a variety of different methods. For the univariate distribution

functions F g
Xl

, the most straightforward estimator is arguably the usual empirical CDF,

which is given by

F̂ g
Xl

(xl) =
1

ng

ng∑
i=1

I{Xg
li ≤ xl}.

For the higher-dimensional objects, i.e. the conditional CDFs and the copula functions,

several nonparametric, semiparametric and fully parametric procedures have been pro-

posed in the literature. Since most studies that make use of decomposition methods use
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data sets containing a large number of individual sociodemographic characteristics, the

substantial sample size requirements of nonparametric methods in such high-dimensional

settings limit their attractiveness. We therefore focus on flexible parametric specifications

in this paper, which have been applied successfully in the empirical literature.

Our preferred method to estimate the conditional CDFs F g
Y |X , which is also used in

our empirical application below, is the distributional regression approach of Foresi and

Peracchi (1995). The distributional regression model assumes that

F g
Y |X(y, x) ≡ Φ(x′δgo(y)),

where Φ(·) is the standard normal CDF (or some other strictly increasing link function).

The finite-dimensional parameter δgo(y) can then be estimated by the maximum likelihood

estimate δ̂g(y) in a Probit model that relates the indicator variable I{Y g ≤ y} to the

covariates Xg, i.e.

δ̂g(y) = argmax
δ

ng∑
i=1

(I{Y g
i ≤ y} log(Φ(Xg

i
′δ)) + (1− I{Y g

i ≤ y}) log(1− Φ(Xg
i
′δ))).

The resulting estimate of the conditional CDF is then given by

F̂ g
Y |X(y, x) = Φ(x′δ̂g(y)).

An alternative approach that is commonly found in the literature (e.g. Machado and

Mata, 2005), would be to model the conditional quantile function by a linear quantile

regression model (Koenker and Bassett, 1978; Koenker, 2005), and then invert the cor-

responding estimated quantile function. Chernozhukov et al. (2013) derive asymptotic

properties of conditional CDF estimators based on distributional and quantile regression

(and several other parametric specifications), establishing classical properties like
√
ng-

consistency and asymptotic normality under standard regularity conditions. Rothe and

Wied (2013) consider specification testing in these types of models.

The copula functions Cg can also be modeled a variety of ways. Following the argu-

ments preceding Proposition 1, we consider the case that Cg is contained in sufficiently

flexible parametric class indexed by a k-dimensional parameter, i.e.

Cg ≡ Cθgo ∈ {Cθ, θ ∈ Θ ⊂ Rk}.
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Different parametric copula models are able to generate different types of dependence pat-

ters, and thus the analyst should chose a specification that is considered flexible enough to

encompass the relationship between the covariates in the respective group. The extensive

reviews of the properties of various copula models in e.g. Nelsen (2006) or Trivedi and

Zimmer (2007) are a useful guidance for this choice. When all covariates are continuously

distributed, the dependence parameters of any common copula model can be estimated

by Maximum Likelihood methods implemented in most common software packages, and

estimates can be shown to be
√
ng-consistent and asymptotically normal under standard

regularity conditions (e.g. Genest, Ghoudi, and Rivest, 1995). When some of the co-

variates follow a discrete marginal distribution, Maximum Likelihood estimation is still

conceptually possible, but might not be feasible as the computational burden of evaluat-

ing the likelihood function grows exponentially in the number of discrete covariates and

their support points (Joe, 1997). In empirical settings with large samples and many dis-

crete covariates, it is therefore more practical to use estimators for the copula parameters

that are faster to compute, even though they might not be fully efficient. An example of

an estimator that satisfies this criterion is the minimum distance estimator

θ̂g = argmin
θ

ng∑
i=1

(F̂ g
X(Xg

1i, . . . , X
g
di)− Cθ(F̂

g
X1

(Xg
1i), . . . F̂

g
Xd

(Xg
di)))

2,

where F̂ g
X denotes the joint empirical CDF of the covariate data from group g. Other

estimators for copula functions with discrete margins have recently been proposed for

example by Nikoloulopoulos and Karlis (2009), Smith and Khaled (2012) or Panagiotelis,

Czado, and Joe (2012).

In our empirical application, which contains several covariates that are not expected

to have the same pairwise dependence patters, we use the Gaussian copula model

CΣ(u) = Φd
Σ(Φ−1(u1), . . . ,Φ−1(ud)),

with Φd
Σ the CDF of a d-variate standard normal distribution with correlation matrix Σ

and Φ the standard normal CDF. This specification has a further computational advan-

tage, namely that the (a, b) element of Σ only affects the pairwise dependence between

Xg
a and Xg

b . We can therefore estimate the matrix Σ by Σ̂, whose (a, b) element is given
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by the “pairwise” minimum distance estimator

Σ̂(ab) = argmin
ρ

ng∑
i=1

(F̂ g
Xa,Xb

(Xg
ai, X

g
bi)− Φ2

ρ(Φ
−1(F̂ g

Xa
(Xg

ai)),Φ
−1(F̂ g

Xb
(Xg

bi))))
2

for all 1 ≤ a < b ≤ d, where F̂ g
Xa,Xb

denotes the joint empirical CDF of Xg
a and Xg

b

in group g, and Φ2
ρ denotes a bivariate standard normal distribution with correlation ρ.

This procedure avoids the high-dimensional numerical optimization of a full minimum

distance estimator, and is thus much faster and stable from a computational point of

view than a standard minimum distance estimator.

6. Asymptotic Theory

In this section, we derive some asymptotic properties of the estimators of the components

of our decomposition introduced above. These will allow us to conduct inference. We

start by introducing the following assumptions.

Assumption 1 (Sampling). For g ∈ {0, 1} the data {(Y g
i , X

g
i )}ngi=1 are an independent

and identically distributed sample from the distribution of (Yg, Xg).

Requiring simple random sampling within the two populations is standard for the

types of microeconometric applications that we have in mind. However, our approach

could in principle be extended to settings with certain types of non-independent obser-

vations, such as time series or clustered data.

Assumption 2 (CDF Estimator). The estimator F̂ g
Y |X is such that as ng →∞

√
ng(F̂

g
Y |X(y, x)− F g

Y |X(y, x)) =
1
√
ng

ng∑
i=1

ψgi (y, x) + oP (1),

uniformly over (y, x) ∈ YX , with ψgi (y, x) a function of (Y g
i , X

g
i ) that is such that

E(ψgi (y, x)) ≡ 0 and sup(y,x)∈YX E(ψgi (y, x)2) <∞, for g ∈ {0, 1}.

This assumption requires the estimator of the conditional CDF of Y g given Xg to be

asymptotically linear and to converge at the standard parametric rate
√
ng. It is a “high

level” condition that can be shown to be satisfied more many standard parametric esti-

mators under mild regularity conditions on the primitives of the data generating process.
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Chernozhukov et al. (2013) derive such a result for the above-mentioned estimator based

on the distributional regression model F g
Y |X(y, x) = Φ(x′δgo(y)), which is our preferred

specification, showing that it holds with

ψgi (y, x) = φ(xδgo)x
I{Y g

i ≤ y} − Φ(Xg
i
′δgo)

Φ(Xg
i
′δgo)(1− Φ(Xg

i
′δgo))

φ(Xg
i
′δgo)X

g
i

with φ the derivative of Φ, under some mild regularity conditions. Chernozhukov et al.

(2013) also consider several other approaches, including linear quantile regression.

Assumption 3 (Copula Estimator). The copula function Cg ≡ Cθgo is contained in

the parametric class {Cθ, θ ∈ Θ ⊂ Rk}, which satisfies condition (ii) of Proposition 1.

Moreover, the estimator θ̂g is such that as ng →∞

√
ng(θ̂

g − θgo) =
1
√
ng

ng∑
i=1

ξgi + oP (1),

with ξgi a function of (Y g
i , X

g
i ) that is such that E(ξgi ) = 0 and E(ξgi ξ

g
i
′) <∞, for g ∈ {0, 1}

Assumption 3 is again an asymptotic linearity condition, this time on the estimate of

the Copula parameter θgo . This type of condition is standard for parametric estimation.

Sufficient conditions for this assumption to hold for extremum estimators like Maximum

Likelihood or the minimum distance approach described above can e.g. be found in Newey

and McFadden (1994).

Assumption 4 (Smoothness). (i) The elements of the parametric class {Cθ(x), θ ∈

Θ ⊂ Rk} of copula functions are continuously differentiable with respect to x and θ.

The corresponding derivatives cg(x) = ∂xCθgo (x) and Cg,θ(x) = ∂θCθgo (x) are uniformly

bounded. (ii) The CDF F g
Y |X(y, x) is continuously differentiable with respect to x, and

the derivative is uniformly bounded. (iii) The functional ν is Hadamard differentiable on

F with derivative ν ′.

This assumption imposes some weak smoothness conditions on the Copula functions,

the conditional CDFs, and the distributional feature of interest. These are necessary

for Delta Method-type arguments to apply. We remark that most commonly considered

distributional features of interest are Hadamard differentiable under standard conditions,

including moments, quantiles and many types of inequality measures. See Rothe (2010)

for further examples and explicit formulas for the derivatives.
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The following proposition considers the asymptotic properties of objects of the form

ν(F̂
g|j,k
Y ) in an asymptotic setting where the relative size of the two samples remains

constant as both their absolute sizes tend to infinite, i.e. ng/(n1 + n0) = λg for some

fixed positive constants λ1, λ0 as n1 →∞ and n0 →∞. As a final piece of notation, let

(ξ1, ψ1, X1, ξ0, ψ0, X0) be a random vector such that {(ξgi , ψ
g
i , X

g
i )}ngi=1 is an i.i.d. sample

from the distribution of (ξg, ψg, Xg) for g ∈ {0, 1}. Note that such a vector always

exists under our assumptions, and that it is such that (ξ0, ψ0, X0) and (ξ1, ψ1, X1) are

stochastically independent. We then obtain the following result (see the Appendix for a

formal proof).

Proposition 2. Under Assumption 1–4,

√
n(ν(F̂

g|j,k
Y )− ν(F

g|j,k
Y ))

d→ Gg|j,k · ν ′(ζg|j,k)

jointly over (g, j,k) ∈ {0, 1} × {0, 1} × {0, 1}d as n ≡ n1 + n0 →∞, where

{Gg|j,k : (g, j,k) ∈ {0, 1} × {0, 1} × {0, 1}d}

is a collection of standard Gaussian random variables that are mutually independent and

independent of the data, and

ζg|j,k(y) =
d∑
s=1

λ
−1/2
ks

∫
F g
Y |X(y|x)(cj(F k

X(Xks
s , x−s))− cj(F k

X(x)))dF k1
X1

(x1) . . . dF kd
Xd

(xd)

+ λ−1/2
g

∫
ψg(y, x)dF j,k

X (x) + λ
−1/2
j ξj

∫
F g
Y |X(y|x)dCj,θ(F k

X(x)),

where Cj,θ(F k
X(x)) = Cj,θ(F k1

X (x1), . . . , F kd
X (xd)), F j,k

X (x) = Cj(F k1
X1

(x1), . . . , F kd
Xd

(xd)),

and cj(F k
X(Xks

s , x−s) = cj(F k1
X1

(x1), . . . , F ks
Xs

(Xks,s), . . . , F
kd
Xd

(xd)).

The proposition shows the distribution of any random vector with generic element
√
n(ν(F̂

g|j,k
Y ) − ν(F

g|j,k
Y )) converges to a mean zero multivariate normal distribution,

with the asymptotic covariance between two generic elements indexed by (g, j,k) and

(g∗, j∗,k∗) given by E(ν ′(ζg|j,k)ν ′(ζg
∗|j∗,k∗)). Since all elements of our detailed decom-

position take the form of linear combinations of these types of objects, the proposition

implies that they are (jointly) asymptotically normal as well. For example, for the term

∆̂ν
M(el) = ν(F̂

0|0,el
Y )− ν(F̂

0|0,0
Y ) the proposition implies that

√
n(∆̂ν

M(k)−∆ν
M(k))

d→ N(0,E((ν ′(ζ0|0,el)− ν ′(ζ0|0,0))2)).
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Similar results hold for the other elements of the decomposition. Since the asymptotic

variance of these objects takes a fairly complicated form, in practice the most conve-

nient way to estimate them seems to be a standard nonparametric bootstrap procedure

in which the estimates are re-computed a large number of times on bootstrap sam-

ples {(Ỹ g
i , X̃

g
i )}ngi=1 drawn with replacement from the original data {(Y g

i , X
g
i )}ngi=1, for

g ∈ {0, 1}. The bootstrap variance estimator then coincides with the empirical variance

of the bootstrap estimates. Such an approach is valid under conditions of the proposition

as long as the obvious analogues of Assumption 2 and Assumption 3 also hold for the

bootstrap estimates of the CDF and the copula parameters. Conditions for the former

can e.g. be found in Chernozhukov et al. (2013), and are standard for the latter.

7. An Empirical Application

In this section, we provide a small-scale empirical study that illustrates the application

of our decomposition of the composition effect in practice. Using data from the Current

Population Survey (CPS), we decompose differences in various features of the 1985 and

2005 distribution of wages among male workers in the United States. There is now

extensive evidence that during this period wage inequality in the United States has been

rising substantially in the top end of the wage distribution, but has slightly decreased in

the bottom end, leading to what is often called a polarization of the US labor market

(Autor et al., 2006; Lemieux, 2008). The main new insight delivered by our methodology

is that the dependence effect can explain a substantial proportion of the increase in

overall wage inequality. This is an interesting finding, since the dependence effect has no

immediate analogue in other decomposition methods that are typically used for this type

of data.

We use a data set from Fortin et al. (2011), which was extracted from the 1983–

1985 and 2003–2005 Outgoing Rotation Group (ORG) supplements of the CPS. See

Lemieux (2006) for further details on its construction. Our data contain information

on 232,784 and 170,693 males, respectively, that were employed in the relevant periods.

Workers in the 1983–1985 and 2003–2005 sample play the role of our group 0 and 1. The

outcome variable of interest is the log hourly wage, measured in constant 1985 dollars
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and multiplied by 100 (to improve the readability of the tables below). The covariates are

years of education, years of potential labor market experience, and dummies for union

coverage, race, marital status, and part-time status. All observations are weighted by the

product of the number of hours worked and their respective CPS sample weights.

[Table 1 about here.]

Some descriptive statistics are given in Table 1. Results on wages confirm the general

picture that was found before in the literature. Over the sample period, the 90% quantile

of the wage distribution has been rising substantially, while the 10% quantile and the

median exhibit only a moderate increase or have remained approximately constant, re-

spectively. There is thus a large increase in wage inequality as measured by the difference

between the 90% and the 10% quantile, but this is the effect of an increase in inequality

in the right tail of the distribution. Regarding the covariates, the most striking feature is

certainly the decline in union coverage from 27% in 1983–1985 to only 15% in 2003–2005.

The average (potential) labor market experience and the average years of education both

increased substantially by more than two years and six months, respectively. Changes in

other explanatory variables are less pronounced.

To estimate the various elements of our decomposition of the composition effect, we

proceed as described in Section 5. We model the copula functions Cg by a Gaussian cop-

ula, and the conditional CDFs F g
Y |X by a distributional regression model with a Gaussian

link function. Compared to an approach based on quantile regression, distributional re-

gression has the advantage that it is not affected by heaping in the distribution of wages,

and seems to be better suited to capture the somewhat irregular behavior of the con-

ditional wage distribution around the level of the minimum wage (Chernozhukov et al.,

2013; Rothe and Wied, 2013). In addition to the covariates mentioned above, we use

quadratic terms in education and experience and a full set of interaction terms for es-

timating the conditional CDFs. Standard errors are calculated via the nonparametric

bootstrap, using B = 200 replications. Due to the large sample sizes, sampling variation

in our estimates is mostly negligible.

[Table 2 about here.]
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[Table 3 about here.]

Table 2 and Table 3 present the results of our decomposition for various measures of

location and spread, respectively. Row by row, we report estimates of the total change

∆ν
O, the usual structure and composition effect ∆ν

S and ∆ν
X , our dependence and marginal

distribution effects ∆ν
D and ∆ν

M , the direct contributions ∆ν
M(el) for each of the six covari-

ates, and “two-way” interaction terms ∆ν
M(k) with |k| = 2. For brevity, we do not report

estimates higher-order interactions. Estimates of the total change ∆ν
O, which impose the

parametric restrictions on copulas and conditional distribution functions as explained

above, are very close to the respective descriptive statistics that can be calculated di-

rectly from Table 1. We take this as an assuring indication that our parametric model

provides a reasonable fit.

We first consider estimates of the structure and composition effect, which are both

parameters that could also be estimated via other methods (e.g. DiNardo et al., 1996;

Machado and Mata, 2005; Rothe, 2010; Chernozhukov et al., 2013, among many others).

Table 2 shows that changes in labor force composition alone can explain a substantial

part of the total change in the mean wage, but they do not offer an explanation for the

differential change at various quantiles. For example, the estimates suggest that changes

in labor force composition alone would have lead to a large upward shift of the median

wage, while the total observed change between 1985 and 2005 was in fact close to zero.

We can also see from Table 2 that the composition effect is positive for each of the three

quantiles under consideration, with the magnitude of the effect gradually increasing with

the quantile level. Correspondingly, the composition effect amount to about two thirds

of the increase in the 90%-10% quantile differences, but has the opposite sign of the total

change in the 50%-10% quantile differences.

We now consider the estimates of the further decomposition proposed in this paper,

starting with the dependence effect. To interpret this component, it is important to

understand the changes in the dependence structure of the covariates that took place

over the study period. To that end, Table 4 reports estimates of the copula parameters

from the 1985 and 2005 samples, respectively (recall that we are working with a Gaussian

copula that is parametrized through a correlation matrix).
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[Table 4 about here.]

The point estimates show several interesting developments. For example, negative asso-

ciations between union coverage and education as well as being nonwhite and education

essentially vanished over the study period. Working part-time became more negatively

associated with education. Being married became more strongly associated with educa-

tion, and somewhat less strongly with experience. The dependence effect measures the

joint contribution of these changes. From Table 3, we can see that it plays a substantial

role for the various measures of spread, explaining about 25% of the respective compo-

sition effects. In case of the 10% quantile, the dependence effect is of roughly the same

absolute magnitude as the composition effect but has the opposite sign. For the other

measures of location in Table 2, the dependence effect is relatively small.

Next, we consider the “direct” marginal distribution effects and “two-way” interac-

tion effects of the six explanatory variables. From Table 2, we find that changes in the

distribution of education and experience both have a similar, strongly positive “direct”

impact on all quantiles, with slightly larger magnitudes for the median relative to the

two extreme quantiles. That is, our estimates suggested that a counterfactual change in

the marginal distribution of either education or experience to its respective 2005 value

would have shifted the 1985 wage distribution to the right, while otherwise approximately

preserving its overall shape. Correspondingly, Table 3 shows that changes in education or

experience alone contribute only moderately to the total increase in inequality observed

over that period. Moreover, we see from Table 2 that these two variables have a sizable

negative interaction effect on the median, and a positive interaction effect of similar ab-

solute magnitude on the 10% quantile. As a consequence, we also observe corresponding

nonzero interaction terms for the various quantile differences in Table 3. To better un-

derstand the interpretation of the interaction effects, consider the case of the median.

Our estimates suggest that a counterfactual change in the marginal distribution of both

education or experience to its respective 2005 value (while holding everything else con-

stant) would have increased the 1985 median by the sum of the two direct contributions

and the corresponding interaction term, i.e. by 5.631 + 5.629− 0.966 = 10.294.

The results also suggest that the decline in unionization had an important impact on

the distribution of wages. Changes in union coverage rates are estimated to have a strong
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negative effect on the median wage, a somewhat less negative one on the 10% quantile,

and a small positive effect on the 90% quantile. This covariate is thus the single most

important one for explaining changes in overall and top-end inequality, as it accounts for

about 25% of the observed change in each the 90%-10% and 90%-50% quantile differences

alone. There are also some minor interactions between union coverage and both education

and experience.

Finally, our estimates suggest that changes in the proportion of part-time, non-white,

and married workers are of comparatively minor importance relative to the aforemen-

tioned covariates when it comes to explaining the composition effect. This comes as no

surprise as Table 1 shows that the marginal distribution of these variables did not change

much between 1985 and 2005.

8. Conclusions

Studying the role of specific covariates in determining between-group differences in eco-

nomic outcomes involves a number of subtle yet important issues. Using results from

copula theory, we show that the composition effect naturally has an interesting struc-

ture that can be exploited in empirical applications. In particular, we show that the

composition effect can be written as the sum of three types of components: (i) the “di-

rect contribution” of each covariate due to between-group differences in the respective

marginal distributions, (ii) several “two way” and “higher order interaction effects” due to

the interplay between two or more marginal distributions, and (iii) a “dependence effect”

accounting for different dependence patterns among the covariates. We show how these

components can be estimated using flexible parametric specifications, and illustrate the

procedure through an application to US wage data. The empirical application suggests

that our method is able to uncover new and interesting features of the data, that have

thus far not been detected by other approaches.

A. Proof of Asymptotic Properties

In this section, we formally prove the asymptotic normality result given in Section 6. For

notational simplicity, suppose that n1 = n0 ≡ n∗, which means that we can work with
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λ1 = λ0 = 1/2. As a first step, we write the object of interest F̂
g|j,k
Y (y) as

F̂
g|j,k
Y (y) =

∫
F̂ g
Y |X(y, x)dĈj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd))

=

∫
(F̂ g

Y |X(y, x)− F g
Y |X(y, x))dĈj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd))

+

∫
F g
Y |X(y, x)dĈj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd))

≡ T1 + T2.

Using Assumption 2–3 and the Glivenko-Cantelli Theorem, it follows that

T1 =
1

n∗

n∗∑
i=1

∫
ψgi (y, x)dF j,k

X (x) + oP (n−1/2
∗ )

uniformly over y. Next, we write T2 as

T2 =

∫
F g
Y |X(y, x)d(Ĉj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd))− Cj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd)))

+

∫
F g
Y |X(y, x)dCj(F̂ k1

X1
(x1), . . . , F̂ kd

Xd
(xd))

≡ T3 + T4.

Using Assumption 3–4 and the Glivenko-Cantelli Theorem, it follows that

T3 = −(θ̂j − θjo)
∫
F g
Y |X(y, x)dCj,θ(F k

X(x)) + oP (n−1/2)

= − 1

n∗

n∗∑
i=1

ξji

∫
F g
Y |X(y, x)dCj,θ(F k

X(x)) + oP (n−1/2).

uniformly over y. Finally, the term T4 can be written as

T4 =

∫
F g
Y |X(y, x)cj(F̂ k

X(x))dF̂ k1
X1

(x1) . . . dF̂ kd
Xd

(xd))

=

∫
F g
Y |X(y, x)cj(F k

X(x))d(F̂ k1
X1

(x1)− F k1
X1

(x1))dF k2
X2

(x2), . . . , dF kd
Xd

(xd)) + . . .

+

∫
F g
Y |X(y, x)cj(F k

X(x))dF k1
X1

(x1) . . . dF
kd−1

Xd−1
(xd−1)d(F̂ kd

Xd
(xd)− F k1

Xd
(xd))

+ F
g|jk
Y (y) + oP (n−1/2)

=
1

n∗

d∑
s=1

n∗∑
i=1

∫
F g
Y |X(y|x)(cj(F k

X(Xks
si , x−s))− cj(F k

X(x)))dF k1
X1

(x1) . . . dF kd
Xd

(xd)

+ F
g|jk
Y (y) + oP (n−1/2)
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uniformly over y. Taken together, we have thus shown that

F̂
g|j,k
Y (y)− F g|jk

Y (y) =
1

n∗

n∗∑
i=1

ζ
g|j,k
i (y) + oP (n−1/2)

uniformly over y, where

ζ
g|j,k
i (y) =

d∑
s=1

∫
F g
Y |X(y|x)(cj(F k

X(Xks
si , x−s))− cj(F k

X(x)))dF k1
X1

(x1) . . . dF kd
Xd

(xd)

+

∫
ψgi (y, x)dF j,k

X (x)− ξji
∫
F g
Y |X(y, x)dCj,θ(F k

X(x)).

The statement of the proposition then follows from the Functional Central Limit Theorem

and the Functional Delta Method.

B. A Simple Example

In this section, we explicitly calculate the components of our decomposition of the com-

position effect for the simple setting described in Section problems. Recall that in group

g ∈ {0, 1} the data are generated as Y g = Xg
1 +Xg

2 + ηg, the covariates Xg ∼ N(µg,Σg)

are bivariate normal with

µg =

 µg1

µg2

 and Σg =

 σ2
g1 ρgσg1σg2

ρgσg1σg2 σ2
g2

 ,

and ηg ∼ N(0, 1). In this setting, the the copula Cg of the distribution of Xg is the

bivariate Gaussian copula with one-dimensional parameter ρg. For the case that ν(F g
Y ) =

Var(Y g), we find that the dependence structure and total marginal distribution effects

are

∆Var
D = 2(ρ1 − ρ0)σ11σ12 and

∆Var
M = (σ2

11 − σ2
01) + (σ2

12 − σ2
02) + 2ρ0(σ11σ12 − σ01σ02),

respectively, and that the partial marginal distribution effects are

∆Var
M (e1) = (σ2

11 − σ2
01) + 2ρ0σ02(σ11 − σ01),

∆Var
M (e2) = (σ2

12 − σ2
02) + 2ρ0σ01(σ12 − σ02), and

∆Var
M (1) = −2ρ0(σ01σ12 + σ02σ11).
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For ν(F g
Y ) = Qg

Y (τ) the distributional feature of interest, we find that

∆
Q(τ)
D = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ1σ11σ12 −

√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12

)
and

∆
Q(τ)
M = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ11 + µ12)− (µ01 + µ02),

and that the partial marginal distribution effects are

∆
Q(τ)
M (e1) = Φ−1(τ)

(√
1 + σ2

11 + σ2
02 + 2ρ0σ11σ02 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ11 − µ01),

∆
Q(τ)
M (e2) = Φ−1(τ)

(√
1 + σ2

01 + σ2
12 + 2ρ0σ01σ12 −

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
+ (µ12 − µ02), and

∆
Q(τ)
M (1) = Φ−1(τ)

(√
1 + σ2

11 + σ2
12 + 2ρ0σ11σ12 +

√
1 + σ2

01 + σ2
02 + 2ρ0σ01σ02

)
− Φ−1(τ)

(√
1 + σ2

11 + σ2
02 + 2ρ0σ11σ02 +

√
1 + σ2

01 + σ2
12 + 2ρ0σ01σ12

)
Other distributional features could be considered in a similar fashion.
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Table 2: Estimated Decomposition of Differences in Distribution of Log Hourly Wages (×100)

of Workers in 2003–2005 and 1983–1985 using CPS Data.

Mean Q90 Q50 Q10

Total Difference ∆ν
O 6.479 (0.189) 18.756 (0.327) 0.862 (0.289) 5.401 (0.267)

Structure Effect ∆ν
S 1.007 (0.167) 8.398 (0.338) -5.632 (0.308) 3.660 (0.272)

Composition Effect ∆ν
X 5.472 (0.127) 10.358 (0.190) 6.493 (0.217) 1.742 (0.183)

Dependence Effect ∆ν
D -0.382 (0.033) 0.737 (0.063) -0.448 (0.063) -1.647 (0.096)

Marginal Distr. Effect ∆ν
M 5.854 (0.121) 9.621 (0.171) 6.941 (0.211) 3.388 (0.181)

“Direct” Contribution to Composition Effect (∆ν
M (ej))

Part-time -0.051 (0.013) 0.016 (0.004) -0.045 (0.012) -0.143 (0.038)

Nonwhite -0.263 (0.018) -0.191 (0.016) -0.329 (0.026) -0.265 (0.021)

Union coverage -2.327 (0.035) 1.092 (0.058) -3.913 (0.085) -2.636 (0.093)

Married -0.526 (0.019) -0.254 (0.019) -0.634 (0.035) -0.640 (0.034)

Education 4.349 (0.074) 4.112 (0.104) 5.631 (0.138) 4.005 (0.126)

Experience 4.307 (0.058) 4.468 (0.100) 5.629 (0.121) 3.647 (0.112)

“Two-Way” Interactions (∆ν
M (k) with |k| = 2)

Part-time:Nonwhite 0.000 (0.000) -0.001 (0.000) -0.001 (0.003) 0.001 (0.005)

Part-time:Union coverage -0.007 (0.002) -0.005 (0.002) -0.007 (0.004) -0.019 (0.011)

Part-time:Married -0.001 (0.000) -0.001 (0.000) -0.001 (0.004) -0.011 (0.008)

Part-time:Education -0.001 (0.000) 0.001 (0.002) -0.003 (0.003) -0.037 (0.019)

Part-time:Experience 0.003 (0.001) 0.003 (0.003) 0.001 (0.004) -0.028 (0.018)

Nonwhite:Union coverage -0.014 (0.002) -0.004 (0.006) -0.001 (0.018) -0.038 (0.018)

Nonwhite:Married 0.003 (0.000) -0.001 (0.002) 0.001 (0.012) -0.024 (0.013)

Nonwhite:Education 0.004 (0.001) 0.018 (0.008) -0.005 (0.018) -0.069 (0.020)

Nonwhite:Experience -0.015 (0.001) 0.009 (0.008) -0.046 (0.017) -0.080 (0.020)

Union coverage:Married -0.035 (0.003) -0.022 (0.006) -0.030 (0.032) -0.070 (0.046)

Union coverage:Education 0.315 (0.009) 0.241 (0.058) 0.265 (0.122) -0.245 (0.105)

Union coverage:Experience 0.084 (0.007) 0.165 (0.053) -0.158 (0.069) -0.303 (0.108)

Married:Education 0.002 (0.003) 0.013 (0.015) 0.027 (0.022) -0.169 (0.043)

Married:Experience -0.013 (0.004) 0.013 (0.012) -0.001 (0.032) -0.188 (0.041)

Education:Experience 0.016 (0.006) -0.094 (0.102) -0.966 (0.146) 0.911 (0.138)

Note: Bootstrapped standard errors (200 replications) are in parenthesis.
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Table 3: Estimated Decomposition of Differences in Distribution of Log Hourly Wages (×100)

of Workers in 2003–2005 and 1983–1985 using CPS Data.

Std. Dev Q90-10 Q90-50 Q50-10

Total Difference ∆ν
O 5.984 (0.118) 13.355 (0.387) 17.895 (0.352) -4.540 (0.316)

Structure Effect ∆ν
S 3.456 (0.126) 4.738 (0.421) 14.030 (0.392) -9.291 (0.373)

Composition Effect ∆ν
X 2.528 (0.062) 8.616 (0.234) 3.865 (0.237) 4.752 (0.192)

Dependence Effect ∆ν
D 0.681 (0.030) 2.384 (0.119) 1.185 (0.074) 1.199 (0.105)

Marginal Distr. Effect ∆ν
M 1.847 (0.050) 6.232 (0.217) 2.680 (0.226) 3.553 (0.194)

“Direct” Contribution to Composition Effect (∆ν
M (ej))

Part-time 0.052 (0.014) 0.159 (0.042) 0.061 (0.016) 0.099 (0.026)

Nonwhite 0.037 (0.004) 0.073 (0.015) 0.137 (0.018) -0.064 (0.018)

Union coverage 1.153 (0.021) 3.728 (0.112) 5.006 (0.105) -1.278 (0.105)

Married 0.184 (0.009) 0.386 (0.034) 0.380 (0.036) 0.006 (0.035)

Education -0.050 (0.023) -0.107 (0.138) -1.518 (0.134) 1.625 (0.147)

Experience 0.156 (0.026) 0.821 (0.136) -1.162 (0.141) 1.982 (0.146)

“Two-Way” Interactions (∆ν
M (k) with |k| = 2)

Part-time:Nonwhite -0.001 (0.000) -0.002 (0.001) -0.001 (0.003) -0.002 (0.006)

Part-time:Union coverage -0.001 (0.001) 0.012 (0.011) 0.001 (0.002) 0.011 (0.011)

Part-time:Married 0.000 (0.000) -0.001 (0.003) 0.001 (0.003) -0.003 (0.005)

Part-time:Education 0.003 (0.001) 0.043 (0.015) -0.003 (0.003) 0.046 (0.016)

Part-time:Experience 0.004 (0.001) 0.036 (0.013) -0.001 (0.003) 0.037 (0.014)

Nonwhite:Union coverage -0.002 (0.001) 0.040 (0.019) 0.005 (0.020) 0.035 (0.025)

Nonwhite:Married -0.002 (0.001) -0.003 (0.010) -0.026 (0.021) 0.023 (0.024)

Nonwhite:Education 0.005 (0.001) 0.092 (0.019) 0.026 (0.018) 0.065 (0.024)

Nonwhite:Experience 0.009 (0.001) 0.097 (0.020) 0.052 (0.020) 0.045 (0.024)

Union coverage:Married -0.007 (0.002) 0.057 (0.047) 0.014 (0.042) 0.042 (0.055)

Union coverage:Education 0.142 (0.005) 0.486 (0.121) -0.024 (0.139) 0.510 (0.156)

Union coverage:Experience 0.174 (0.005) 0.514 (0.114) 0.312 (0.139) 0.202 (0.153)

Married:Education 0.013 (0.002) 0.185 (0.041) -0.026 (0.034) 0.211 (0.052)

Married:Experience 0.022 (0.003) 0.201 (0.043) 0.011 (0.035) 0.189 (0.053)

Education:Experience -0.036 (0.005) -1.005 (0.170) 0.872 (0.178) -1.877 (0.148)

Note: Bootstrapped standard errors (200 replications) are in parenthesis.
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Table 4: Estimated Copula Parameters.

Nonwhite Union Married Education Experience

1985 2005 1985 2005 1985 2005 1985 2005 1985 2005

Part-time 0.092 0.049 -0.113 -0.095 -0.412 -0.392 -0.063 -0.165 -0.314 -0.293

Nonwhite 0.089 0.043 -0.144 -0.120 -0.094 0.028 0.008 -0.056

Union 0.180 0.119 -0.170 -0.008 0.260 0.195

Married 0.049 0.199 0.580 0.457

Education -0.168 -0.041

Estimates of the parameters of the Gaussian copula that determine the pairwise dependence structure

between the two respective covariates.
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