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Abstract

Empirical regression discontinuity (RD) studies often use covariates to increase the
precision of their estimates. In this paper, we propose a novel class of estimators
that use such covariate information more efficiently than existing methods and can
accommodate many covariates. It involves running a standard RD analysis in which
a function of the covariates has been subtracted from the original outcome variable.
We characterize the function that leads to the estimator with the smallest asymptotic
variance, and consider feasible versions of such estimators in which this function is
estimated, for example, through modern machine learning techniques.
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1. INTRODUCTION

Regression discontinuity (RD) designs are widely used for estimating causal effects from ob-
servational data in economics and other social sciences. These designs exploit that in many
contexts a unit’s treatment status is determined by whether its realization of a running vari-
able exceeds some known cutoff value. For example, students might qualify for a scholarship
if their GPA is above some threshold. Under continuity conditions on the distribution of
potential outcomes, the average treatment effect at the cutoff is identified in such designs
by the jump in the conditional expectation of the outcome given the running variable at the
cutoff. Methods for estimation and inference based on local linear regression are widely used
in practice, and their properties are by now well understood (e.g., Hahn et al., 2001; Imbens
and Kalyanaraman, 2012; Calonico et al., 2014; Armstrong and Kolesár, 2020).

An RD analysis generally does not require data beyond the outcome and the running
variable, but in practice researchers often have access to additional covariate information,
such as socio-demographic characteristics, that can be used to reduce the variance of empiri-
cal estimates. A common strategy is to include the covariates linearly and without separate
localization in a local linear RD regression (Calonico et al., 2019). This linear adjustment
estimator is consistent without functional form assumptions on the underlying conditional
expectations if the covariates are predetermined, but generally does not exploit the available
covariate information efficiently. We also argue that inference based on this estimator can
be distorted if the number of covariates is too large relative to the sample size.

To address these issues, we propose a novel class of covariate-adjusted RD estimators
that combine local linear regression techniques with flexible covariate adjustments, which
can make use of modern machine learning techniques. To motivate the approach, let Yi and
Zi denote the outcome and covariates, respectively, of observational unit i. Calonico et al.
(2019) show that linear adjustment estimators are asymptotically equivalent to standard local
linear RD regressions with the modified outcome variable Yi − Z⊤

i γ0, where γ0 is a vector
of projection coefficients. We consider generalizations of such estimators with a modified
outcome of the form Yi − η(Zi), for some generic function η.

Such estimators are easily seen to be consistent for any fixed η if the distribution of the
covariates varies smoothly around the cutoff in some appropriate sense, which is compatible
with the notion of covariates being “predetermined”. We also show that their asymptotic
variance is minimized if η = η0 is the average of the two conditional expectations of the
outcome variable given the running variable and the covariates just above and below the
cutoff. This optimal adjustment function is generally nonlinear and not known in practice,
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but can be estimated from the data.
Our proposed estimators hence take the form of a local linear RD regression with the

generated outcome Yi− η̂(Zi), where η̂ is some estimate of η0 obtained in a preliminary stage.
We implement such estimators with cross-fitting (e.g., Chernozhukov et al., 2018), which is
an efficient form of sample splitting that removes some bias and allows us to accommodate
a wide range of estimators of the optimal adjustment function. In particular, one can use
modern machine learning methods like lasso regression, random forests, deep neural networks,
or ensemble combinations thereof, to estimate the optimal adjustment function. However,
in low-dimensional settings researchers can also use classical nonparametric approaches like
local polynomials or series regression, or estimators based on parametric specifications.

Importantly, valid inference on the RD parameter in our setup does not require that
η0 is consistently estimated. Our theory only requires that in large samples the first-stage
estimates concentrate in a mean-square sense around some deterministic function η̄, which
could in principle be different from η0. The rate of this convergence can be arbitrarily
slow. Our setup allows for this kind of potential misspecification because our proposed
RD estimators are “very insensitive” to estimation errors in the preliminary stage. This is
because they are constructed as sample analogues of a moment function that contains η0 as
a nuisance function, but does not vary with it: as discussed above, our parameter of interest
is equal to the jump in the conditional expectation of Yi − η(Zi) given the running variable
at the cutoff for any fixed function η. This insensitivity property is related to Neyman
orthogonality, which features prominently in many modern two-stage estimation methods
(e.g., Chernozhukov et al., 2018), but it is a global rather than a local property and is thus
in effect substantially stronger.1

Our theoretical analysis shows that, under the conditions outlined above, our proposed
RD estimator is first-order asymptotically equivalent to a local linear “no covariates” RD
estimator with Yi − η̄(Zi) as the dependent variable. This result is then used to study its
asymptotic bias and variance, and to derive an asymptotic normality result. The asymptotic
variance of our estimator depends on the function η̄ and achieves its minimum value if η̄ = η0

(that is, if η0 is consistently estimated in the first stage), but the variance can be estimated
1A moment function is Neyman orthogonal if its first functional derivative with respect to the nuisance

function is zero, but the (conditional) moment function on which our estimates are based is fully invariant
with respect to the nuisance function. Chernozhukov et al. (2018) give several examples of setups in which
such a property occurs, which include optimal instrument problems, certain partial linear models, and
treatment effect estimation under unconfoundedness with known propensity score. Such global insensitivity
is also easily seen to occur more generally if one of the two nuisance functions in a doubly robust moment
(cf. Robins and Rotnitzky, 2001) is known.
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consistently irrespective of whether or not that is the case. As our result does not require a
particular rate of convergence for the first step estimate of η0, our RD estimator can be seen
as shielded from the “curse of dimensionality” to some degree, and can hence be expected
to perform well in settings with many covariates.

Practical issues like bandwidth choice and construction of confidence intervals with good
coverage properties are also rather straightforward to address in our setting. In particular,
our results justify applying existing methods to a data set in which the outcome Yi is replaced
with the generated outcome Yi − η̂(Zi), ignoring that η̂ has been estimated. Our approach
can therefore easily be integrated into existing software packages.

Our results are qualitatively similar to those that have been obtained for efficient influence
function (EIF) estimators of the population average treatment effect in simple randomized
experiments with known and constant propensity scores (e.g., Wager et al., 2016). Such
parallels arise because EIF estimators are also based on a moment function that is globally
invariant with respect to a nuisance function. In fact, we argue that our RD estimator is in
many ways a direct analogue of the EIF estimator, and that the variance it achieves under the
optimal adjustment function is similar in structure to the semiparametric efficiency bound
in simple randomized experiments.

Through simulations, we also show that our theoretical findings provide very good ap-
proximations to our estimators’ finite sample behavior. We also show that our approach can
yield meaningful efficiency gains in empirical practice: we revisit the analysis of the effect
of the antipoverty program Progresa/Opportunidades in Mexico on consumption, and find
that a machine learning version of our flexible covariate adjustments reduce the standard
error by up to 15.7% relative to an estimator that does not use covariate information.

Related Literature. Our paper contributes to an extensive literature on estimation and
inference in RD designs; see, e.g., Imbens and Lemieux (2008) and Lee and Lemieux (2010)
for a surveys, and Cattaneo et al. (2019) for a textbook treatment. Different ad-hoc methods
for incorporating covariates into an RD analysis have long been used in empirical economics
(see, e.g., Lee and Lemieux, 2010, Section 3.2.3). Following Calonico et al. (2019), it has
become common practice to include covariates without localization into the usual local linear
regression estimator. We show that our approach nests this estimator as a special case, but is
generally more efficient. Other closely related papers are Kreiß and Rothe (2023), who extend
the approach in Calonico et al. (2019) to settings with high-dimensional covariates under
sparsity conditions, and Frölich and Huber (2019), who propose to incorporate covariates
into an RD analysis in a fully nonparametric fashion. The latter method is generally affected
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by the curse of dimensionality, and is thus unlikely to perform well in practice.
Our paper is also related in a more general way to the vast literature on two-step estima-

tion problems with infinite-dimensional nuisance parameters (e.g., Andrews, 1994; Newey,
1994), especially the recent strand that exploits Neyman orthogonal (or debiased) moment
functions and cross-fitting (e.g., Belloni et al., 2017; Chernozhukov et al., 2018). The latter
literature focuses mostly on regular (root-n estimable) parameters, while our RD treatment
effect is a non-regular (nonparametric) quantity. Some general results on non-regular estima-
tion based on orthogonal moments are derived in Chernozhukov et al. (2019), and specific
results for estimating conditional average treatment effects in models with unconfoundedness
are given, for example, in Kennedy et al. (2017), Kennedy (2020) and Fan et al. (2020). Our
results are qualitatively different because, as explained above, our estimator is based on a
moment function that satisfies a property that is stronger than Neyman orthogonality.

Plan of the Paper. The remainder of this paper is organized as follows. In Section 2, we
introduce the setup and review existing procedures. In Section 3, we describe our proposed
covariate-adjusted RD estimator. In Section 4, we present our main theoretical results.
Further extensions are discussed in Section 5. Section 6 contains a simulation study and
Section 7 an empirical application. Section 8 concludes. Proofs of our main results are
given in Appendix A, and Appendices B–E give further theoretical, simulation and empirical
results.

2. SETUP AND PRELIMINARIES

2.1. Model and Parameter of Interest. We begin by considering sharp RD designs. The
data {Wi}i∈[n] = {(Yi, Xi, Zi)}i∈[n], with [n] = {1, . . . , n}, are an i.i.d. sample of size n from
the distribution of W = (Y,X,Z). Here, Yi ∈ R is the outcome variable, Xi ∈ R is the
running variable, and Zi ∈ Rd is a (possibly high-dimensional) vector of covariates.2 Units
receive the treatment if and only if the running variable exceeds a known threshold, which
we normalize to zero without loss of generality. We denote the treatment indicator by Ti, so
that Ti = 1{Xi ≥ 0}. The parameter of interest is the height of the jump in the conditional
expectation of the observed outcome variable given the running variable at zero:

τ = E[Yi|Xi = 0+]− E[Yi|Xi = 0−], (2.1)
2Throughout the paper, we assume that the distribution of the running variable Xi is fixed, but we allow

the conditional distribution of (Yi, Zi) given Xi to change with the sample size in our asymptotic analysis. In
particular, we allow the dimension of Zi to grow with n in order to accommodate high-dimensional settings,
but we generally leave such dependence on n implicit in our notation.
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where we use the notation that f(0+) = limx↓0 f(x) and f(0−) = limx↑0 f(x) are the right
and left limit, respectively, of a generic function f(x) at zero. In a potential outcomes
framework, the parameter τ coincides with the average treatment effect of units at the cutoff
under certain continuity conditions (Hahn et al., 2001).

2.2. Standard RD Estimator. Without the use of covariates, the parameter of interest is
typically estimated by running a local linear regression (Fan and Gijbels, 1996) on each side
of the cutoff. That is, the baseline “no covariates” RD estimator takes the form

τ̂base(h) = e⊤1 argmin
β∈R4

n∑
i=1

Kh(Xi)(Yi − S⊤
i β)

2, (2.2)

where Si = (Ti, Xi, TiXi, 1)
⊤ collects the necessary covariates, K(·) is a kernel function with

support [−1, 1], h > 0 is a bandwidth, Kh(v) = K(v/h)/h, and e1 = (1, 0, 0, 0)⊤ is the first
unit vector. We will use repeatedly in this paper that the “no covariates” RD estimator can
also be written as a weighted sum of the realizations of the outcome variable,

τ̂base(h) =
n∑

i=1

wi(h)Yi,

where the wi(h) are local linear regression weights that depend on the data through the
realizations of the running variable only; see Appendix A.1 for an explicit expression.

Under standard conditions (e.g. Hahn et al., 2001), which include that the running vari-
able is continuously distributed, and that the bandwidth h tends to zero at an appropriate
rate, the estimator τ̂base(h) is approximately normally distributed in large samples, with bias
of order h2 and variance of order (nh)−1:

τ̂base(h)
a∼ N

(
τ + h2Bbase, (nh)

−1Vbase

)
(2.3)

where “ a∼” indicates a finite-sample distributional approximation justified by an asymptotic
normality result, and the bias and variance terms are given, respectively, by

Bbase =
ν̄

2

(
∂2xE[Yi|Xi = x]|x=0+ − ∂2xE[Yi|Xi = x]|x=0−

)
and

Vbase =
κ̄

fX(0)
(V[Yi|Xi = 0+] + V[Yi|Xi = 0−]).

Here ν̄ and κ̄ are kernel constants, defined as ν̄ = (ν̄22−ν̄1ν̄3)/(ν̄2ν̄0−ν̄21) for ν̄j =
∫∞
0
vjK(v)dv

and κ̄ =
∫∞
0
(K(v)(ν̄1v − ν̄2))

2dv/(ν̄2ν̄0 − ν̄21)
2, and fX denotes the density of Xi. Practical
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methods for bandwidth choice, variance estimation, and the construction of confidence inter-
vals based on approximations like (2.3) are discussed in Calonico et al. (2014) and Armstrong
and Kolesár (2020), for example.

2.3. Linear Adjustment Estimator. To improve the accuracy of RD inference, empirical
researchers often use a “linear adjustment” estimator that adds available covariates linearly
and without kernel localization to the regression (2.2):

τ̂lin(h) = e⊤1 argmin
β,γ

n∑
i=1

Kh(Xi)(Yi − S⊤
i β − Z⊤

i γ)
2. (2.4)

This estimator can equivalently be written as “no covariates” RD estimator with covariate-
adjusted outcome Yi − Z⊤

i γ̂h, where γ̂h is the minimizer with respect to γ in (2.4):

τ̂lin(h) =
n∑

i=1

wi(h)(Yi − Z⊤
i γ̂h).

Calonico et al. (2019) show that τ̂lin(h) is consistent for the RD parameter without func-
tional form assumptions on the underlying conditional expectations if the covariates are
predetermined, in the sense that their conditional distribution given the running variable
varies smoothly around the cutoff. Specifically, if E[Zi|Xi = x] is twice continuously differ-
entiable around the cutoff, then

τ̂lin(h)
a∼ N

(
τ + h2Bbase, (nh)

−1Vlin

)
under regularity conditions similar to those for the “no covariates” estimator, where the bias
term Bbase is as above and the new variance term is

Vlin =
κ̄

fX(0)
(V[Yi − Z⊤

i γ0|Xi = 0+] + V[Yi − Z⊤
i γ0|Xi = 0−]),

with γ0, a non-random vector of projection coefficients, the probability limit of γ̂h.
The linear adjustment estimator generally has smaller asymptotic variance than the “no

covariates” estimator, in the sense that Vlin ≤ Vbase (Kreiß and Rothe, 2023, Remark 3.5). It
also has the same asymptotic distribution as its infeasible counterpart

τ̃lin(h) =
n∑

i=1

wi(h)(Yi − Z⊤
i γ0)

that uses the population projection coefficients γ0 instead of their estimates γ̂h to adjust the
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outcome variable. Estimation uncertainty about γ̂h does therefore not affect the (first-order)
asymptotic properties of τ̂lin(h). This insight can be used, as in Calonico et al. (2019) or
Armstrong and Kolesár (2018), to adapt methods for bandwidth choice, variance estimation
and the construction of confidence intervals for “no covariates” estimators to the case of
linear adjustments.

3. FLEXIBLE COVARIATE ADJUSTMENTS

While linear adjustment estimators are easy to implement, their focus on linearity means
that they generally do not exploit the available covariate information efficiently. Linear
adjustment estimators might also not work well outside of low dimensional settings: they
are not well-defined if the number of covariates exceeds the (local) sample size, and, as we
illustrate in Section 3.4 below, the corresponding standard errors can be severely downward
biased even if only a moderate number of covariates is used. In this paper, we propose
“flexible covariate adjustment” estimators with cross-fitting to address these issues.

3.1. Motivation. Recall that the linear adjustment estimator is asymptotically equivalent to
a “no covariates” RD estimator of the form in (2.2) that uses the covariate-adjusted outcome
Yi−Z⊤

i γ0 instead of the original outcome Yi. We consider a more general class of estimators
with covariate-adjusted outcomes based on potentially nonlinear adjustment functions η:

τ̂(h; η) =
n∑

i=1

wi(h)Mi(η), Mi(η) = Yi − η(Zi). (3.1)

If the covariates are predetermined, in the sense that their values are not causally affected
by the treatment, one would expect conditional expectations of transformations of the covari-
ates given the running variable to vary smoothly around the cutoff in some appropriate sense.
For our formal analysis, we specifically assume that E[η(Zi)|Xi = x] is twice continuously
differentiable with respect to x around the cutoff for (essentially) every adjustment function
η.3 The continuity of the conditional expectation implied by this assumption means that

τ = E[Mi(η)|Xi = 0+]− E[Mi(η)|Xi = 0−] for all η. (3.2)
3By “essentially” we mean, for example, that we consider only functions for which the respective condi-

tional expectations exist in the first place. Our assumptions are slightly stronger than those in Calonico et al.
(2019), for example, who only assume smoothness of the conditional expectation of the covariates themselves
given the running variable around the cutoff, as we require such smoothness to also hold for conditional
expectations of transformations of the covariates. This additional assumption, however, is in line with the
covariates being predetermined.
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The estimator τ̂(h; η) can be seen as a sample analogue estimator based on the moment
condition (3.2) that identifies τ . An important feature of this moment condition is that it
is globally invariant with respect to the functional parameter η. Because of this invariance,
τ̂(h; η) is consistent for the RD parameter τ for every η and satisfies

τ̂(h; η)
a∼ N

(
τ + h2Bbase, (nh)

−1V (η)
)
. (3.3)

Due to the assumed continuity of second derivatives of E[η(Zi)|Xi = x], the bias term Bbase

is again that of the baseline “no covariates” estimator, but the variance term is now

V (η) =
κ̄

fX(0)
(V[Mi(η)|Xi = 0+] + V[Mi(η)|Xi = 0−]).

As the leading bias in (3.3) does not depend on the adjustment function, we ideally want
to choose η such that V (η) is as small as possible. Our Theorem 3 below implies that the
optimal adjustment function η0 that minimizes this asymptotic variance term is the equally-
weighted average of the left and right limits of the “long” conditional expectation function
E[Yi|Xi = x, Zi = z] at the cutoff. That is, V (η) ≥ V (η0) for all η, where

η0(z) =
1

2

(
µ+
0 (z) + µ−

0 (z)
)
, µ⋆

0(z) = E[Yi|Xi = 0⋆, Zi = z] for ⋆ ∈ {+,−}. (3.4)

As η0 is generally unknown in practice, we propose to estimate the RD parameter τ by a
feasible version of τ̂(h; η0) that uses a first-stage estimate of the optimal adjustment function.

3.2. Proposed Estimator and its Theoretical Properties. Implementing our proposed
estimation strategy requires choosing a first-stage estimator η̂ of η0. Our theoretical analysis
below does not require this estimator to be of a particular type. Applied researchers can
choose methods according to their assumptions about the shape of the optimal adjustment
function, or simply focus on procedures that are convenient to implement; see Section 3.3
for details. We also employ a version of cross-fitting, analogous to the “DML2” procedure
in Chernozhukov et al. (2018), in the construction of our proposed estimator. Cross-fitting
is an efficient type of sample splitting that both prevents overfitting and allows a unified
theoretical analysis under general conditions for the first-stage estimate of η0.

Specifically, our proposed procedure entails the following steps:

1. Randomly split the data {Wi}i∈[n] into S folds of equal size, collecting the correspond-
ing indices in the sets Is, for s ∈ [S]. In practice, S = 5 or S = 10 are common choices
for the number of cross-fitting folds. Let η̂(z) = η̂(z; {Wi}i∈[n]) be the researcher’s
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preferred estimator of η0, calculated on the full sample; and let η̂s(z) = η̂(z; {Wi}i∈Ics ),
for s ∈ [S], be a version of this estimator that only uses data outside the sth fold.

2. Estimate τ by computing a local linear “no covariates” RD estimator that uses the ad-
justed outcome Mi(η̂s(i)) = Yi− η̂s(i)(Zi) as the dependent variable, where s(i) denotes
the fold that contains observation i:

τ̂(h; η̂) =
n∑

i=1

wi(h)Mi(η̂s(i)).

Our theoretical analysis below establishes that the estimator τ̂(h; η̂) is asymptotically
equivalent to the infeasible estimator τ̂(h; η̄) =

∑n
i=1wi(h)Mi(η̄) that uses the variable Mi(η̄)

as the outcome, where η̄ is a deterministic approximation of η̂ whose error vanishes in large
samples in some appropriate sense. In view of (3.3), it then holds that

τ̂(h; η̂)
a∼ N

(
τ + h2Bbase, (nh)

−1V (η̄)
)
.

The asymptotic variance in the above expression is minimized if η̂ is consistent for η0, in
the sense that η̄ = η0. However, the distributional approximation is valid even if η̄ ̸= η0

because the moment condition (3.2) holds for (essentially) all adjustment functions, and
not just the optimal one. In that sense, our procedure allows for misspecification in the
first stage. Moreover, we show that even under misspecification V (η̄) is typically smaller
than Vbase. We also demonstrate that one can easily construct valid confidence intervals
for τ by applying standard methods developed for settings without covariates to a data set
with running variable Xi and outcome Mi(η̂s(i)), ignoring sampling uncertainty about the
estimated adjustment function.

3.3. Estimating the Adjustment Function. A wide range of methods can be used to
obtain a first-stage estimate of the adjustment function in our framework. We mostly focus
on estimates of the optimal adjustment function η0 that take the form

η̂(z) =
1

2
(µ̂+(z) + µ̂−(z)),

where µ̂+(z) and µ̂−(z) are separate estimates of µ+
0 (z) = E[Yi|Xi = 0+, Zi = z] and µ−

0 (z) =

E[Yi|Xi = 0−, Zi = z], respectively. As mentioned above, our theoretical analysis shows
that consistent estimation of η0 is not necessary in order for inference based τ̂(h; η̂) to be
valid, as we only need η̂ to be consistent for some deterministic function η̄ in a particular
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sense. Specifying a correct model for η0, or for the two conditional expectations µ+
0 and µ−

0 ,
is therefore not a highly critical concern in our setup. For efficiency, however, it is of course
desirable that η̄ is as close to η0 as possible.

If one wishes to maintain the simplicity of linear adjustments, one can for example set
η̂(z) = z⊤γ̂h, where γ̂h is the minimizer with respect to γ in (2.4), and thus obtain a cross-
fitting version of τ̂lin(h). That is, one could interpret the linear adjustments as an estimate
of the optimal adjustment function under the implicit (and generally incorrect) specification
that µ+

0 (z) + µ−
0 (z) = c + z⊤γ0 for some vector of coefficients γ0 and some constant c.4 We

discuss the advantages of such an estimator in Section 3.4. One can in principle also obtain
estimates of η0 by specifying other simple parametric models for E[Yi|Xi = x, Zi = z], such
as a global linear regression models. Under appropriate smoothness conditions, one can also
use classical nonparametric methods to estimate µ+

0 and µ−
0 , with local polynomial regression

being particularly suitable due to their good boundary properties.
If the number of covariates is large, however, we recommend the use of modern machine

learning methods, such as lasso or post-lasso regression, random forests, deep neural net-
works, boosting, or ensemble combinations thereof. Such methods might need a particular
tuning though, as the underlying algorithms typically aim for a good overall estimate by
optimizing an “integrated mean squared error” type criterion, and are not guaranteed to
produce estimates that very accurate at any particular point. That is, a machine learning
method that is given the task of learning the conditional expectation E[Yi|Xi = x, Zi = z]

might not produce an estimator with good properties at x = 0+ or x = 0−. One can adapt
many machine learning methods to our setup, however, by focusing the respective algorithm
to units whose realization of the running variable is close to the cutoff. More formally, let

Ê[Yi|Zi = z] = argmin
f∈F

n∑
i=1

l(Yi, f(Zi))

be a generic estimator of E[Yi|Zi = z] computed by minimizing some empirical loss function
L(f) =

∑n
i=1 l(Yi, f(Zi)) over a set of candidate functions F , and let b > 0 be some positive

bandwidth. We can then define a version of this estimator that “targets” the area just to
the right of the cutoff as

µ̂+(z) = argmin
f∈F

n∑
i=1

l(Yi, f(Zi))K(Xi/b)1{Xi ≥ 0},

4We stress again that correct specification of µ+
0 and µ−

0 , or the optimal adjustment function, is not
required for our corresponding estimator of τ to be consistent.
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and similarly for µ̂−(z). The choice of b involves a bias-variance trade-off similar to the
one encountered in classical nonparametric kernel regression problems. We are not aware
of generic theoretical results for such “localized” machine learning estimators in settings in
with b → 0 as n → ∞. However, specific results are given by Su et al. (2019) for the lasso,
and by Colangelo and Lee (2022) for series estimators and deep neural networks.

3.4. Linear Adjustments and the Role of Cross-Fitting. The use of cross-fitting sim-
plifies many arguments in our theoretical analysis,5 but is also key for good practical per-
formance of covariate-adjusted RD estimators. To see this, it is instructive to compare the
linear adjustment estimator τ̂lin(h), described in (2.4), with a version of our estimator τ̂(h; η̂),
described in Section 3.2, that uses the same linear adjustment function η̂(z) = γ̂⊤h z, so that
our use of cross-fitting becomes the only difference between the two procedures. We now
illustrate through a small simulation experiment that conventional inference based on lin-
ear adjustment estimators can be meaningfully distorted even with a moderate number of
covariates, and that cross-fitting by itself alleviates much of the issue.

We consider simple data generating processes (DGPs) in which we observe mutually inde-
pendent standard normal covariates Zi = (Z1i, . . . , Zdi) ∼ N (0, Id), for d ∈ {0, 10, 20, . . . , 50},
that are all irrelevant, in the sense that they are fully independent of the outcome and the
running variable, which are in turn generated as

Yi = sin(Xi) + εi, εi ∼ N (0, 1), Xi ∼ Uniform(−π, π), Xi⊥εi. (3.5)

For each of 50,000 replications with sample size n = 1, 000, we then compute the linear ad-
justment estimator together with its standard error and a conventional robust bias corrected
(RBC) confidence intervals for the RD parameter τ = 0 as in Calonico et al. (2019), using
their R package rdrobust. We also compute our “cross-fitted” version of this estimator, and
the analogue standard error and RBC confidence interval, as described in Section 5.1.

As inspection of the simulation results suggests that both procedures yield approximately
unbiased estimates of τ for all values of d under consideration, we focus on differences in
standard errors and confidence interval coverage. The left panel of Figure 1 shows that
the standard error of the conventional linear adjustment estimator exhibits a downward
bias that increases substantially with the number of covariates, from about 7% for d = 0

to almost 40% for d = 50. This effect is due to overfitting: with many covariates, the
5Without cross-fitting, one would generally have to impose Donsker conditions on the space in which the

first-stage estimator takes values, which imply severe limits on the complexity of the estimated functions
that might not be palatable for many machine learning methods (Chernozhukov et al., 2018).
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Figure 1: Ratio of simulated average standard error to actual standard deviation (left panel) and
simulated coverage rates of RBC confidence intervals with nominal level 95% (right panel) under
data generating process (3.5) for conventional linear adjustments (black line) and linear adjustments
with cross-fitting (red line) for 0, 10, . . . , 50 (all irrelevant) covariates.

regression residuals that enter the standard error formula become “too close to zero”, and
standard errors therefore become “too small”. With cross-fitting the finite-sample bias of the
standard error remains at a moderate 5 to 7% for all values of d under consideration. The
right panel of Figure 1 shows that, due to increasingly biased standard errors, the coverage
of linear adjustment RBC confidence intervals with nominal level 95% deteriorates from
slightly below the nominal level for d = 0 to slightly above 80% for d = 50. With cross-
fitting, RBC confidence intervals have close to nominal coverage for all numbers of covariates
under consideration.

Our simulation results not only demonstrate the benefits of cross-fitting, but also sug-
gests that practitioners should thus use caution when inference based on conventional linear
adjustment estimators even if the number of covariates used in the analysis is only moderate
to low (relative to the effective sample size), as standard errors can be severely downward
biased. We revisit this issue in the context of our empirical application below.
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4. THEORETICAL PROPERTIES

4.1. Assumptions. We study the theoretical properties of our proposed estimator under a
number of conditions that are either standard in the RD literature, or concern the general
properties of the first-stage estimator η̂. To describe them, we denote the support of Zi by
Z, and the support of Xi by X . We write Xh = X ∩ [−h, h], and Zh denotes the support of
Zi given Xi ∈ Xh. We also define the following class of admissible adjustment functions:

E = {η : E[η(Zi)|Xi = x] exists and is twice continuously differentiable around the cutoff}.

The class E implicitly depends on the underlying conditional distribution of the covariates
given the running variable. If the conditional distribution of the covariates given the running
variable changes smoothly around the cutoff, the class E contains essentially all functions of
the covariates, subject only to technical integrability conditions.6

Assumption 1. For all n ∈ N, there exist a set Tn ⊂ E and a function η̄ ∈ Tn such that:
(i) η̂s belongs to Tn with probability approaching 1 for all s ∈ [S]; (ii) it holds that:

sup
η∈Tn

sup
x∈Xh

E
[
(η(Zi)− η̄(Zi))

2|Xi = x
]
= O(r2n)

for some deterministic sequence rn = o(1).

Assumption 1 states that with high probability the first-stage estimator belongs to some
realization set Tn ⊂ E . As discussed above, this requirement seems weak as we generally
expect E to be very large. The assumption also states that the sets Tn contract around
a deterministic sequence of functions in a particular L2-type sense. Note that taking the
supremum in Assumption 1 over Xh instead of X suffices as the properties of the first stage
estimator are only relevant for observations with non-zero kernel weights in the second-stage
local linear regression. The assumption does not impose any restrictions on the speed at
which η̂ concentrates around η̄. It also allows the function η̄ to be different from the target
function η0, which means that η̂ can be inconsistent for η0.

Mean-square error consistency as prescribed in Assumption 1 follows under classical
conditions for the parametric and nonparametric procedures for settings in which the number

6For example, if the conditional distribution of Zi given Xi admits a density fZ|X(z|x) that is twice
continuously differentiable in x and |∂j

xfZ|X(z|x)| ≤ gj(z) for x in a neighborhood of the cutoff, some
integrable functions gj , and j ∈ {0, 1, 2}, then E contains at least all bounded Borel functions. The class E
also contains all polynomials if the corresponding conditional moments of Zi exist and are twice continuously
differentiable.
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of covariates is fixed. For the type of “localized” machine learning estimators of η0 described
in Section 3.3, existing results imply that for fixed b > 0 and K the uniform kernel

sup
η∈Tn

E
[
(η(Zi)− η̄(Zi))

2|Xi ∈ (−b, b)
]
= O(r 2

n), (4.1)

with η̄(z) = (E[Yi|Xi ∈ (−b, 0), Zi = z] + E[Yi|Xi ∈ (0, b), Zi = z])/2 and some rn = o(1),
under general conditions. For example, if η̄(z) is contained in a Hölder class of order s,
then (4.1) can hold with r2n = n−2s/(2s+d) for estimators that exploit smoothness. If η̄(z)
is s-sparse, then (4.1) can hold with r2n = s log(d)/n for estimators that exploit sparsity.
Assumption 1 then follows from (4.1) if the conditional distribution of the covariates does
not change “too quickly” when moving away from the cutoff. For example, if the covariates
are continuously distributed conditional on the running variable, having that

sup
x∈Xh

sup
z∈Zh

fZ|X(z|x)
fZ|X∈(−b,b)(z)

< C,

for some constant C and all n sufficiently large, suffices. Similar conditions can be given for
discrete conditional covariate distributions, or intermediate cases. If E[Yi|Xi = x, Zi = z] is
sufficiently smooth in x on both sides of the cutoff, we can also expect that η̄ is “close” to
η0 for “small” values of b. Formal rate results with b → 0 are given by Su et al. (2019) for
the Lasso, and by Colangelo and Lee (2022) for series estimators and deep neural networks.

Assumption 2. For j ∈ {1, 2}, it holds that:

sup
η∈Tn

sup
x∈Xh\{0}

∣∣∂jxE [η(Zi)− η̄(Zi)|Xi = x]
∣∣ = O(vj,n).

for some deterministic sequences vj,n = o(1).

Assumption 2 also concerns the first-stage estimator, and requires the first and second
derivatives of E [η(Zi)− η̄(Zi)|Xi = x] to be close to zero in large samples for all η ∈ Tn. We
generally expect this condition to hold with v1,n = v2,n = rn, where rn is as in Assumption 1.7

7For example, this can easily be seen to be the case if η̂ converges to η̄ uniformly on Z with rate rn and
the smoothness conditions for fZ|X(z|x) given in Footnote 6 hold. Similarly, under regularity conditions
on E[Zi|Xi = x], these three rates coincide if Tn contains only linear functions. Without any additional
restrictions on first stage estimators or Tn, except that it contains only bounded functions, Assumption 2
also follows from Assumption 1, again with v1,n = v2,n = rn, under restrictions concerning solely the
conditional density fZ|X(z|x). Specifically, it suffices that E

[(
∂j
xfZ|X(Zi|x)/fZ|X(Zi|x)

)2|Xi = x
]

is bounded
for j ∈ {1, 2} uniformly in x and the conditions from Footnote 6 hold.
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Assumption 3. (i) Xi is continuously distributed with density fX , which is continuous and
bounded away from zero over an open neighborhood of the cutoff; (ii) The kernel function K

is a bounded and symmetric density function that is continuous on its support, and equal to
zero outside some compact set, say [−1, 1]; (iii) The bandwidth satisfies h→ 0 and nh→ ∞
as n→ ∞.

Assumption 3 collects some standard conditions from the RD literature. Note that
continuity of the running variable’s density fX around the cutoff is strictly speaking not
required for an RD analysis. However, a discontinuity in fX is typically considered to be an
indication of a design failure that prevents τ from being interpreted as a causal parameter
(McCrary, 2008; Gerard et al., 2020). For this reason, we focus on the case of a continuous
running variable density in this paper.

Assumption 4. There exist constants C and L such that the following conditions hold
for all n ∈ N. (i) E[Mi(η̄)|Xi = x] is twice continuously differentiable on X \ {0} with
L-Lipschitz continuous second derivative bounded by C; (ii) For all x ∈ X and some q > 2

E[(Mi(η̄) − E[Mi(η̄)|Xi])
q|Xi = x] exists and is bounded by C; (iii) V[Mi(η̄)|Xi = x] is

L-Lipschitz continuous and bounded from below by 1/C for all x ∈ X \ {0}.

Assumption 4 collects standard conditions for an RD analysis with Mi(η̄) as the outcome
variable. Part (i) imposes smoothness conditions on E[Mi(η̄)|Xi = x], and parts (ii) and
(iii) impose restrictions on conditional moments of the outcome variable. Throughout, we
use constants C and L independent of the sample size to ensure asymptotic normality of the
infeasible estimator τ̂(h; η̄) even in settings where the distribution of the data, and thus η̄,
might change with n.

4.2. Main Results. We give three main results in this subsection. The first shows that our
proposed estimator τ̂(h; η̂) is asymptotically equivalent to an infeasible analogue τ̂(h; η̄) that
replaces the estimator η̂ with the deterministic sequence η̄; the second shows the asymptotic
normality of the estimator; and the third characterizes how the asymptotic variance changes
with the adjustment function and shows that η0 is indeed the optimal adjustment.

Theorem 1. Suppose that Assumptions 1–3 hold. Then

τ̂(h; η̂) = τ̂(h; η̄) +OP (rn(nh)
−1/2 + v1,nh(nh)

−1/2 + v2,nh
2).

Theorem 1 is easiest to interpret in what is arguably the standard case that v1,n = v2,n =
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rn, in which it holds that

τ̂(h; η̂) = τ̂(h; η̄) +OP (rn(h
2 + (nh)−1/2)) = τ̂(h; η̄) +OP (rn|τ̂(h; η̄)− τ |).

The accuracy of the approximation that τ̂(h; η̂) ≈ τ̂(h; η̄) thus increases with the rate at
which η̂ concentrates around η̄, but first-order asymptotic equivalence holds even if the
first-stage estimator converges arbitrarily slowly. This insensitivity of τ̂(h; η̂) to sampling
variation in η̂ occurs because τ̂(h; η̂) is a sample analogue of the following moment function

τ = E[Mi(η)|Xi = 0+]− E[Mi(η)|Xi = 0−],

which is insensitive to variation in η over the set E . Moment functions with a local form
of insensitivity with respect to a nuisance function, called Neyman orthogonality, are used
extensively in the recent literature on two-stage estimators that use machine learning in the
first stage (e.g. Belloni et al., 2017; Chernozhukov et al., 2018). The global insensitivity that
arises in our RD setup is stronger, and allows us to work with weaker conditions on the first-
stage estimates than those used in papers that work with Neyman orthogonality. Similarly
globally insensitive moment function exists, for example, in certain types of randomized
experiments, and our proposed estimator is in many ways analogous to efficient estimators
in such setups; see Section 5.2 for further discussion.

Theorem 2. Suppose that Assumptions 1–4 holds. Then
√
nhV (η̄)−1/2

(
τ̂(h; η̂)− τ − h2Bn

) d→ N (0, 1),

for some Bn = Bbase + oP (1), where Bbase and V (·) are as defined above in Sections 2.2
and 3.1, respectively.

Theorem 2 follows from Theorem 1 under the additional regularity conditions of As-
sumption 4. It shows that our estimator is asymptotically normal, gives explicit expressions
for its asymptotic bias and variance, and justifies the distributional approximation given in
Section 3.2.

Theorem 3. Suppose E[Y 2
i |Xi = x] is uniformly bounded in x, the limit V[Yi−µ⋆

0(Zi)|Xi =

0⋆] exists for ⋆ ∈ {+,−}, and η0 ∈ V, where the function class V is defined as

V ≡ {η : V[η(Zi)|X = x] and Cov[η(Zi), µ
⋆
0(Zi)|Xi = x] are continuous for ⋆ ∈ {+,−}} .
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Then, for any η(a), η(b) ∈ V,

V (η(a))− V (η(b)) = 2
κ̄

fX(0)

(
V[η0(Zi)− η(a)(Zi)|Xi = 0]− V[η0(Zi)− η(b)(Zi)|Xi = 0]

)
.

Theorem 3 introduces a function class V that, similarly to the discussion of the class E
above, we expect to contain essentially all functions, subject to some integrability conditions.
The theorem implies that a generic adjustment function η(a) leads to a lower asymptotic
variance than another function η(b) if η(a) is closer to the optimal adjustment function than
η(b) in a particular sense: V (η(a)) < V (η(b)) if and only if V[η0(Zi) − η(a)(Zi)|Xi = 0] <

V[η0(Zi) − η(b)(Zi)|Xi = 0]. We therefore obtain the lowest possible value of V (η̄) for
η̄ = η0. Moreover, even if η̄ ̸= η0, our flexible covariate adjustments typically still yield
efficiency gains relative to existing RD estimators. For example, V (η̄) < Vbase if and only
if V[η0(Zi) − η̄(Zi)|Xi = 0] < V[η0(Zi)|Xi = 0], i.e. whenever η̄(Zi) captures some of the
variance of η0(Zi) among units near the cutoff. Similarly, V (η̄) < Vlin if and only if V[η0(Zi)−
η̄(Zi)|Xi = 0] < V[η0(Zi)− Z⊤

i γ0|Xi = 0], i.e. whenever η̄ is “closer” to η0 in our particular
L2-type sense than the population linear adjustment z⊤γ0 is.

We remark that in practice a smaller asymptotic variance generally leads to a bias reduc-
tion through channel of bandwidth choice. If V (η̄) < Vbase, then for any given bandwidth
sequence h that satisfies our assumptions the estimator τ̂(h; η̂) has the same asymptotic bias
and smaller variance than the “no covariates” estimator τ̂base(h). However, if we consider the
bandwidths h∗(η̄) = n−1/5 (V (η̄)/4B2

base)
1/5 and h∗base = n−1/5 (Vbase/4B

2
base)

1/5 that minimize
the respective first-order mean squared errors, the estimator τ̂(h∗(η̄); η̂) has both smaller
asymptotic bias and smaller asymptotic variance than τ̂base(h

∗
base).

5. FURTHER RESULTS AND DISCUSSIONS

5.1. Inference. Our result in Theorem 2 suggests that one should be able to construct
valid confidence intervals for τ by applying standard methods for inference based on the
“no covariates” RD estimator to the generated data set {(Xi,Mi(η̂s(i)))}i∈[n], ignoring the
sampling uncertainty about the estimated adjustment function. As we show in more detail
in Appendix B, this turns out to be correct.

For example, assuming a bound on |∂2xE[Yi|Xi = x]|, the absolute value of the second
derivative of the conditional expectation of the outcome given the running variable, we can
construct a “bias-aware” confidence interval as in Armstrong and Kolesár (2020) as

CIba1−α =
[
τ̂(h; η̂)± zα(b̄(h)/ŝe(h; η̂)) ŝe(h; η̂)

]
.
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Here zα(r) is the 1− α/2 quantile of |N(r, 1)|, the absolute value of the normal distribution
with mean r and variance one, b̄(h) is an explicit bound on the finite sample bias of “no
covariates” RD estimator, and ŝe(h; η̂) is a nearest-neighbor standard error. Alternatively,
we can construct a “robust bias correction” confidence interval as in Calonico et al. (2014)
by subtracting an estimate of the first-order bias of τ̂(h; η̂), based on local quadratic regres-
sion, from the estimator, and adjusting the standard error appropriately. This yields the
confidence interval

CIrbc1−α =
[
τ̂ rbc(h; η̂)± zαŝerbc(h; η̂)

]
,

where zα is the 1−α quantile of the standard normal distribution. We show in Appendix B
that both CIba1−α and CIrbc1−α have correct asymptotic coverage under standard conditions
even if the bandwidth sequence h ∼ n−1/5 is such that the asymptotic bias of τ̂(h; η̂) is of the
same order as its standard deviation. We also derive results for confidence intervals based
on undersmoothing, and methods for bandwidth selection.

5.2. Analogies with Randomized Experiments. The results in Section 4 are qualita-
tively similar to ones obtained for efficient influence function (EIF) estimators of the popula-
tion average treatment effect (PATE) in randomized experiments with known and constant
propensity scores (e.g., Wager et al., 2016; Chernozhukov et al., 2018). To see this, consider
a randomized experiment with unconfounded treatment assignment and a known and con-
stant propensity score p. Using our notation in an analogous fashion, the EIF of the PATE
in such a setup is typically given in the literature (e.g., Hahn, 1998) in the form

ψi(m
0
0,m

1
0) = m1

0(Zi)−m0
0(Zi) +

Ti(Yi −m1
0(Zi))

p
− (1− Ti)(Yi −m0

0(Zi))

1− p
,

where mt
0(z) = E[Yi|Zi = z, Ti = t] for t ∈ {0, 1}. The minimum variance any regular

estimator of the PATE can achieve is thus VPATE = V(ψi(m
0
0,m

1
0)). By randomization, it also

holds that τPATE = E[ψi(m
0,m1)] for all (suitably integrable) functions m0 and m1, and thus

the PATE is identified by a moment function that satisfies a global invariance property. A
sample analogue estimator of τPATE based on this moment function reaches has asymptotic
variance VPATE if m̂t is a consistent estimator of mt

0 for t ∈ {0, 1}, but remains consistent and
asymptotically normal with asymptotic variance V(ψi(m̄

0, m̄1)) if m̂t is consistent for some
other function m̄t, t ∈ {0, 1}. The convergence of m̂t to m̄t can be arbitrarily slow for these
results (e.g. Wager et al., 2016; Chernozhukov et al., 2018).

The qualitative parallels between these findings and ours in Section 4 arise because our
covariate-adjusted RD estimator is in many ways a direct analogue of such EIF estimators.
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To show this, write m(z) = (1− p)m1(z)+ pm0(z) for any two functions m0 and m1, so that
m0(z) = (1− p)m1

0(z) + pm0
0(z). The PATE’s influence function can then be expressed as

ψi(m
0
0,m

1
0) =

Ti(Yi −m0(Zi))

p
− (1− Ti)(Yi −m0(Zi))

1− p
,

and it holds that

E[ψi(m
0,m1)] = E[Yi −m(Zi)|Ti = 1]− E[Yi −m(Zi)|Ti = 0],

which is the difference in average covariate-adjusted outcomes between treated and untreated
units. This last equation is fully analogous to our equation (3.2), with p = 1/2, and con-
ditioning on Ti = 1 and Ti = 0 replaced by conditioning on Xi in infinitesimal right and
left neighborhoods of the cutoff (the value p = 1/2 is appropriate here because continuity of
the running variable’s density implies that an equal share of units close to the cutoff can be
found on either side). An EIF estimator of τPATE is thus analogous to our estimator τ̂(h; η̂),
as they are both sample analogues a moment function with the same basic properties.

5.3. Fuzzy RD Designs. In fuzzy RD designs, units are assigned to treatment if their
realization of the running variable falls above the threshold value, but might not comply
with their assignment. The conditional treatment probability given the running variable
hence changes discontinuously at the cutoff, but in contrast to sharp RD designs it does not
jump from zero to one. The parameter of interest in fuzzy RD designs is

θ =
τY
τT

≡ E[Yi|Xi = 0+]− E[Yi|Xi = 0−]

E[Ti|Xi = 0+]− E[Ti|Xi = 0−]
,

which is the ratio of two sharp RD estimands.8 Under standard conditions (Hahn et al.,
2001; Dong, 2017), one can interpret θ as the average causal effect of the treatment among
units at the cutoff whose treatment decision is affected by whether their value of the running
variable is above or below the cutoff.

Similarly to sharp RD designs, predetermined covariates can be used is fuzzy RD designs
to improve efficiency. Building on our proposed method, we consider estimating θ by the
ratio of two generic flexible covariate-adjusted sharp RD estimators:

θ̂(h; η̂Y , η̂T ) =
τ̂Y (h; η̂Y )

τ̂T (h; η̂T )
=

∑n
i=1wi(h)(Yi − η̂Y,s(i)(Zi))∑n
i=1wi(h)(Ti − η̂T,s(i)(Zi))

.

8Throughout this subsection, the notation is analogous to that used before, with the subscripts Y and T
referencing the respective outcome variable.
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In Appendix C, we show that this estimator is asymptotically normal, with asymptotic vari-
ance that depends on the population counterparts η̄Y and η̄T of the two estimated adjustment
functions.9 We further show that this asymptotic variance is minimized if the estimated ad-
justment functions concentrate around η̄Y = ηY,0 and η̄T = ηT,0, respectively. That is, the
optimal adjustment functions for fuzzy RD designs can be obtained by separately consider-
ing two covariate-adjusted sharp RD problems with outcomes Yi and Ti, respectively. This
holds because for fixed adjustment functions ηY and ηT we have that θ̂(h; ηY , ηT ) − θ is
first-order asymptotically equivalent to a sharp RD estimator with the infeasible outcome
Ui(ηY , ηT ) = (Yi − θTi − (ηY (Zi)− θηT (Zi))) /τT . Applying the result of Theorem 3, it fol-
lows that the asymptotic variance of θ̂(h; ηY , ηT ) is minimized if (ηY (Zi)−θηT (Zi))/τT equals
the optimal adjustment function for the outcome (Yi − θTi) /τT . By linearity of conditional
expectations, this holds if ηY = ηY,0 and ηT = ηT,0.

5.4. Cross-Fitting. Two remarks on cross-fitting are in order. First, we note that the
realization of our estimator τ̂(h; η̂) can in principle depend on the particular random splits
of the data into S folds in finite samples. To make the results more robust with respect to
sample splitting we can proceed as suggested in Chernozhukov et al. (2018, Section 3.4) by
repeating the estimation procedure a number of times, and reporting a summary measure
of the estimates obtained in this fashion, such as the median. We proceed in this fashion in
our empirical application below, for example.

As a second remark, we note that instead of the type of cross-fitting described in Sec-
tion 3.2, which is analogous to the “DML2” method in Chernozhukov et al. (2018), one
could also consider an analogue of their “DML1” method, which creates an overall estimate
by averaging separate estimates from each data fold. In our context, this would yield an
estimator of the form

τ̂alt(h; η̂) =
1

S

∑
s∈[S]

∑
i∈Is

wi,s(h)Mi(η̂s),

where wi,s(h) is the local linear regression weight of unit i using only data from the s-th fold;
cf. Appendix A.1. From the proof of Theorem 1, one can see that under its conditions

τ̂alt(h; η̂)− τ̂(h; η̄) = OP (rn(nh)
−1/2 + v2,nh

2). (5.1)
9This result can be used to construct a confidence interval for θ based on the t-statistic. Alternatively,

confidence sets for θ can be constructed via the Anderson-Rubin-type approach, which circumvents some
problems of the delta-method-based inference (Noack and Rothe, 2021).
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The estimators τ̂(h; η̂) and τ̂alt(h; η̂) thus have the same first-order asymptotic distribution.10

Comparing the rate in (5.1) to that obtained in Theorem 1, we can see that the alter-
native implementation removes the term of order OP (v1,nh(nh)

−1/2). We still prefer our
proposed implementation of cross-fitting because it allows existing routines for bandwidth
selection and confidence interval construction to be applied directly to the generated data
set {(Xi,Mi(η̂s(i)))}i∈[n], as discussed in Section 5.1.

6. SIMULATIONS

6.1. Estimators. We consider a number of variations of our covariate-adjusted RD esti-
mator that use different methods for estimating the conditional expectations µ+

0 and µ−
0

in each fold of the data. Specifically, we compute “localized” estimators as described in
Section 3.3 with a uniform kernel and Ê[Yi|Zi = z] obtained using one of the following meth-
ods: (i) global linear regression; (ii) shallow neural net; (iii) random forest; (iv) boosted
tree; (v) post-lasso estimator of Belloni et al. (2012); (vi) an ensemble combination (Super-
Learner) of the just-mentioned methods. We use the statistical software R. The choice of
machine learning methods follows that of Chernozhukov et al. (2018). We use the default
values of the tuning parameters in the respective packages and use cross-fitting with five
folds in the simulations and ten folds in the empirical application.11 In the second-stage RD
regression, we select the bandwidth and conduct inference based on the covariate-adjusted
outcomes M(η̂) using the bias-aware approach RDHonest.12 In the second stage, a trian-
gular kernel is used and nearest-neighbor standard errors are computed. For reference, we
calculate an oracle version of our flexible covariate adjustments that uses the true optimal
adjustment function instead of an estimate.

Furthermore, we report the “no covariates” RD estimator, and we adapt the conventional
linear adjustment estimator, with and without cross-fitting, to the bias-aware inference frame-
work. The conventional linear adjustment estimator without cross-fitting here is obtained as

10An analogous point is made by Chernozhukov et al. (2018) in their specific context for their methods
DML1 and DML2.

11The only exceptions are the neural nets, where the decay parameter has to be selected by the user.
Specifically, we use shallow neural with one hidden layer, two nodes, and decay parameter set to 0.1 (package
nnet); random forest with minimal leaf size set to five that averages over 500 tress (package randomForest);
boosted trees implemented with 100 boosting rounds (package gbm); and post-lasso regression with data-
driven penalty terms (package hdm). For estimation with neural nets we normalize all variables to lie
between zero and one. The ensemble method is implemented using the package SuperLearner with ten-fold
cross-validation.

12In Appendix D, we also present results based on robust bias correction and a version of undersmoothing
in the second stage.
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follows. In the first step, we run a local linear RD regression with covariates included linearly
(without localization) as in (2.4) and the bandwidth equal to the optimal “no covariates”
bandwidth. Based on this regression, we generate the adjustment terms Z⊤

i γ̂
(1), where γ̂(1)

is the vector of estimated coefficients on Zi. Next, we select the optimal bandwidth with
Yi−Z⊤

i γ̂
(1) as the outcome variable, and rerun the first regression using this new bandwidth

to obtain a new vector of estimated coefficients γ̂(2). In the second stage, we use the RDHon-
est command with the modified outcome Yi − Z⊤

i γ̂
(2), i.e. we select a new bandwidth and

obtain a point estimate and confidence interval based on it. In the cross-fitted version of
this procedure, the coefficients in the ith adjustment term are obtained using data outside
of the fold of observation i, similarly to the procedure described in Section 3.2.

6.2. Data-Generating Processes. We consider three different data generating processes
(DGPs) indexed by L ∈ {0, 4, 16} in our simulations. In each DGP, we have four independent
baseline covariates, (Z1i, . . . , Z4i), that are distributed uniformly over [−1, 1], and we vary
the degree of complexity of their association with the outcome. In DGP 1, the covariates
do not enter the optimal adjustment function; in DGP 2, they enter linearly; and in DGP 3,
they enter nonlinearly. Specifically, in each DGP, the running variable Xi follows the uniform
distribution over [−1, 1] and the outcome is generated as:

Yi = 1{Xi ≥ 0}+ ϕX(Xi) + ϕL(Xi, Zi) + εi,

ϕL(Xi, Zi) = 1{L > 0} (ϕX(Xi) + 1{Xi ≥ 0}) ·

(
L∑
l=1

bl(Zi) + 0.25 ·
4∑

j=1

Zji

)
,

where ϕX(Xi) = sign(Xi)(X
2
i + .5X), εi ∼ N (0, 0.25), and the terms bl(Zi), are Hermite

polynomials of the covariates, where the first four Hermite polynomials are the baseline
covariates. We supply the four baseline covariates to all estimation methods of the first
stage, and for lasso estimation we additionally supply 100 Hermite polynomials. The second
stage smoothness constant required by RDHonest is set to its population value in each DGP.
We conduct 50, 000 replications with samples of size n = 2, 000.

6.3. Results. Table 1 reports the main results of our simulation study. We first note that
here all CIs have simulated coverage rates close to the nominal one. We next compare the
“no covariates” RD estimator and the oracle estimator. In DGP 1, these two estimators
are numerically equal. In DGPs 2–3, the covariates have some explanatory power for the
outcome, and the oracle estimator has a substantially lower standard deviation than the “no
covariates” estimator.
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We now turn to our RD estimators with flexible covariate adjustments. In DGP 1 and 2,
the feasible estimators perform similarly to the oracle, with only a minor increase in the
standard deviation. In DGP 3, where the linear adjustments are not optimal, all the adjust-
ments based on machine learning methods perform better than the linear adjustments. The
ensemble method is closest to the oracle in terms of mean squared error. We emphasize that
we have chosen the tuning parameters of the flexible methods not necessarily optimally and
choosing them via cross-validation might improve the overall performance of the methods.

In Appendix D, we present additional simulation results for estimates based on different
first-stage adjustment functions that all use the bandwidth that is optimal for the “no covari-
ates” RD estimator in the second stage. We also consider covariate-adjusted RD estimators
that use the bandwidth selected in the second stage, and conduct inference using the robust
bias corrections and a version of undersmoothing. The qualitative conclusions remain very
similar to those presented above.

7. EMPIRICAL APPLICATION

7.1. Setup. To illustrate the use of our proposed methods in empirical practice, we revisit the
analysis of the effect on consumption of the antipoverty, conditional cash transfer program
Progresa/Opportunidades in Mexico in the early 2000s. Eligibility for the program was
determined based on a pre-intervention household poverty-index, which led to a regression
discontinuity design. We use a dataset assembled by Calonico et al. (2014) and focus on urban
localities. We consider four outcome variables, namely food and non-food consumption, one
year and two years after the implementation of the program, and conduct an intention-to-
treat analysis where eligibility for the cash transfer constitutes the treatment.

The data set contains 1,944 observations for which full covariate information is available.
The 85 baseline covariates, recorded prior to program implementation, include: the house-
holds size, household head’s age, sex, years of education and employment status, spouse’s
age and years of education, number of children not older than five years and their sex, house
characteristics: whether the house has cement floors, water connection, water connection
inside the house, a bathroom, electricity, number of rooms, pre-intervention consumption,
and an identifier of the urban locality in which the house is located.13

7.2. Results. We compute estimates of the RD parameter for the methods considered in
our simulations above (see Section 6.1), and also use the bias-aware approach for the second

13Calonico et al. (2014) use these covariates for their falsification tests (see Table S.A.XI in their supple-
mentary materials) but do not to obtain their empirical estimates.
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Figure 2: Outcome variable in the empirical application.
Notes: The outcome is the food consumption one year after the program was introduced. Each blue dot
represents the mean of approximately 20 observations. The solid lines represents the local linear fit with
triangular kernel and bandwidth h = 0.6.

stage.14 For brevity, we focus on a single outcome, the effect of the cash transfer on food
consumption one year after the program was introduced, and the bias-aware approach of e.g.
Armstrong and Kolesár (2020) in this section. Results for the other outcome variables and
different second-stage inference methods are reported in Appendix E.

Our results are reported in Table 2, where the upper panel presents the results using no
covariates and conventional linear adjustments. In the lower panel, the rows correspond to
different first-stage methods of constructing adjustment terms in the approach proposed in
this paper. We select a conservative bound on the maximal second derivative of the condi-
tional expectation of the outcome variable given the running variable equal to M = 300.15

14We supply the 85 covariates to all methods, and for lasso estimation additionally include interaction terms
between all baseline covariates other than the location dummies, which results in a total of 238 covariates.

15The bound on the smoothness constant can be calibrated using the following method suggested by Kolesár
and Rothe (2018): “if a researcher believes, for example, that the CEF differs by no more than S from a
straight line between the CEF values at the endpoints of any interval of length one in the support of the
running variable, a reasonable choice for the bound on the second derivative is M = 8S.” In our application,
the difference between the conditional expectation function and a straight line can be very conservatively
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Table 1: Simulation Results
Bias Std Dev RMSE CI Coverage Avg CI Length Avg Bandwidth
×100 ×100 ×100 ×100 ×100 ×100

DGP L=0
No covariates 3.69 7.49 8.35 94.90 32.58 43.20
Linear Adjustments 3.69 7.51 8.37 94.68 32.44 43.17
Linear Adjustments with CF 3.71 7.52 8.38 94.95 32.84 43.31
Flexible Adjustments
Oracle 3.69 7.49 8.35 94.90 32.58 43.20
Linear Regression 3.73 7.50 8.38 94.82 32.64 43.24
Neural Nets 3.73 7.50 8.38 94.84 32.63 43.23
Boosted Tree 3.78 7.61 8.50 94.77 33.10 43.54
Random Forest 3.75 7.54 8.42 94.83 32.81 43.36
rLasso 3.73 7.49 8.36 94.87 32.59 43.21
SuperLearner 3.73 7.50 8.38 94.86 32.64 43.24
DGP L=4
No covariates 8.52 17.03 19.04 94.95 74.29 65.59
Linear Adjustments 3.84 7.75 8.65 94.66 33.56 44.03
Linear Adjustments with CF 3.85 7.76 8.67 94.92 33.96 44.17
Flexible Adjustments
Oracle 3.94 7.95 8.88 94.84 34.68 44.62
Linear Regression 3.89 7.76 8.68 94.77 33.85 44.14
Neural Nets 3.89 7.76 8.68 94.75 33.84 44.14
Boosted Tree 4.30 8.51 9.54 94.86 37.13 46.33
Random Forest 4.14 8.22 9.20 94.87 35.85 45.51
rLasso 3.91 7.78 8.71 94.80 33.95 44.20
SuperLearner 3.89 7.75 8.67 94.78 33.82 44.13
DGP L=16
No covariates 10.45 20.96 23.42 94.87 91.01 72.23
Linear Adjustments 7.35 14.67 16.40 94.70 63.43 60.42
Linear Adjustments with CF 7.38 14.70 16.45 94.85 64.07 60.59
Flexible Adjustments
Oracle 3.99 7.93 8.88 94.95 34.68 44.62
Linear Regression 7.39 14.69 16.44 94.74 63.82 60.52
Neural Nets 4.95 9.73 10.92 95.00 42.44 49.37
Boosted Tree 5.04 9.97 11.17 94.79 43.33 49.90
Random Forest 6.58 13.12 14.67 94.73 56.91 57.17
rLasso 4.06 7.98 8.95 94.84 34.83 44.76
SuperLearner 4.06 7.98 8.95 94.89 34.83 44.76

Notes: Results are based on 50,000 Monte Carlo draws. Columns show results for the simulated mean bias (Bias); the simulated
standard deviation of the estimator (Std. Dev.); the simulated root mean squared error (RMSE); simulated coverage of confidence
intervals with 95% nominal level (CI Coverage); the average simulated confidence interval length (Avg CI Length); and the
average simulated bandwidth (Avg Bandwidth). For flexible adjustments, in the first stage, the sample is restricted to the
observations that lie in the window (−b, b) with b being twice the “no covariates” bandwidth.
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Table 2: Estimation results for the empirical application.
Estimate SE ∆SE Bandwidth

No covariates -18.6 16.6 - 0.591
Linear Adjustments -14.8 13.7 -21.0% 0.567
Linear Adjustments with CF -13.3 17.1 2.8% 0.579
Flexible Adjustments
Linear Regression -16.0 15.7 -5.4% 0.578
Neural Nets -16.2 15.5 -6.9% 0.576
Boosted Trees -17.2 14.5 -14.7% 0.569
Random Forest -19.1 14.4 -15.1% 0.570
rLasso -21.5 14.4 -15.3% 0.575
SuperLearner -18.3 14.3 -15.7% 0.569

Notes: Covariate adjustments are obtained using the methods listed. In the second
stage, RDHonest with smoothness constant M = 300 is used. We report the median
estimate across 100 splits of the data, the nearest-neighbor standard error taking into
account the variation introduced by sample splitting (SE), the percentage change
in the standard error relative to the “no covariates” standard error (∆SE), and
the median bandwidth. For flexible adjustments, in the first stage, the sample is
restricted to the observations that lie in the window (−b, b) with b = 1.182 being
twice the “no covariates” bandwidth.

The relative performance of different covariate adjustments is very similar over a wide range
of choices for the smoothness constant, as predicted by the theory. We report estimation
results with M = 100 and M = 500 in the appendix. The results are based on 100 random
splits of the data and we report the median point estimates, standard errors accounting for
the variation introduced by sample splitting (Chernozhukov et al., 2018, Section 3.4), the
percentage reduction of the standard error relative to the “no covariates” RD estimator, and
the median bandwidths.

All point estimates are very similar considering the magnitude of the standard errors.
All confidence intervals contain zero, but their length varies. Our estimator with linear
adjustments reduces the standard error by 5.4% relative the standard RD estimator with no
covariates. All our nonparametric methods improve upon linear regression adjustments. In
particular, our preferred approach based on the ensemble of all ML methods achieves the
reduction in the standard error of 15.7%. We note that the conventional linear adjustments
appear to yield larger efficiency gains, but with 85 covariates the standard error is likely
to be severely downward biased here; see Section 3.4. In fact, the cross-fitted version of

bounded by S = 25. To ensure valid inference, we select a conservative bound on the smoothness constant
equal to M = 300.
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this estimator exhibits a slight increase in the standard error relative to the “no covariates”
standard error.

Figure 3: Adjustment terms in the empirical application.
Notes: The figure presents the adjustment terms (for one split of the data) obtained using SuperLearner
for the food consumption one year after the program was introduced. Each blue dot represents the mean
of approximately 20 observations. The solid lines represents the local linear fit with triangular kernel and
bandwidth h = 0.6.

7.3. Adjustment Terms. As explained above, our analysis assumes that the conditional
expectation functions of transformations of the covariates given the running variable vary
smoothly around the cutoff. Most importantly, this must be satisfied for E(η̄(Zi)|Xi = x),
where η̄ is the population function targeted by the estimated adjustment. To investigate
the plausibility of this assumption, we can plot the estimated adjustment terms against the
running variable and see whether there are any visually apparent discontinuities around the
cutoff. Put differently, if we compute a “no covariates” RD estimator with η̂s(i)(Zi) as the
outcome variable, we would expect to see an estimated jump with only small deviations from
zero that are compatible with statistical noise if our assumptions hold.16 In Figure 3 shows

16If this jump would happens to be exactly zero in a specific data set, our flexible covariate adjusted RD
estimator would be numerically equal to the “no covariates” RD estimate, but the standard errors of both
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such a plot for our empirical application. Each blue dot represents the mean of approximately
20 adjustment terms based on SuperLearner binned based on the running variable, and the
red line shows the local linear regression fit with bandwidth h = 0.6. We can see that the fit
is very smooth, with essentially no jump at the cutoff, lending credibility to our assumptions.

8. CONCLUSIONS

We have proposed a novel class of estimators that can make use of covariate information
more efficiently than the linear adjustment estimators that are currently used widely in
practice. In particular, our approach allows the use of modern machine learning tools to
adjust for covariates, and is at the same time largely unaffected by the “curse of dimen-
sionality”. Our estimator is also easy to implement in practice, and can be combined in a
straightforward manner with existing methods for bandwidth choice and the construction
of confidence intervals. For this reason, we expect it to be attractive for a wide range of
economic applications.

A. PROOFS OF THE MAIN RESULTS

In this section, we prove Theorems 1–3. To this end, we show a more general result that
allows for a local polynomial regression of an arbitrary order p. We also use this result in
Appendix B to establish the validity of the inference methods discussed in Section 5.1.

A.1. Additional Notation. Denote the realizations of the running variable by Xn =

(Xi)i∈[n]. For 0 ≤ v ≤ p, we define feasible and infeasible estimators of the jump in the
v-th derivative of the conditional expectation of the modified outcome at the cutoff using
the p-th order local polynomial regression as:

τ̂v,p(h; η̂) =
n∑

i=1

wi,v,p(h)Mi(η̂s(i)) and τ̂v,p(h; η̄) =
n∑

i=1

wi,v,p(h)Mi(η̄),

wi,v,p(h) = w+
i,v,p(h)− w−

i,v,p(h),

w⋆
i,v,p(h) = e⊤v

(
n∑

i=1

K⋆
h(Xi)X̃p,iX̃

⊤
p,i

)−1

K⋆
h(Xi)X̃p,i for ⋆ ∈ {+,−},

estimators would still generally be different.
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with X̃p,i = (1, Xi, ..., X
p
i )

⊤, Kh(v) = K(v/h)/h, K+
h (v) = Kh(v)1{v ≥ 0}, K−

h (v) =

Kh(v)1{v < 0}. Corresponding estimates of β⋆
v(η̄) = ∂vxE[Mi(η̄)|Xi = x]|x=0⋆ are:

β̂⋆
v,p(h; η̂) =

n∑
i=1

w⋆
i,v,p(h)Mi(η̂s(i)) and β̂⋆

v,p(h; η̄) =
n∑

i=1

w⋆
i,v,p(h)Mi(η̄) for ⋆ ∈ {+,−}.

A.2. General Result. In this subsection, we state and prove two theorems that generalize
Theorems 1 and 2.

Theorem A.1. Suppose that Assumptions 1–3 hold with j ∈ {1, ..., p+ 1} in Assumption 2.
Then:

τ̂0,p(h; η̂) = τ̂0,p(h; η̄) +OP (tp),

where tp = rn(nh)
−1/2 +

∑p
j=1 vj,nh

j(nh)−1/2 + vp+1,nh
p+1.

In the proof of Theorem A.1, we will use the following lemma that collects some standard
intermediate steps in the analysis of local polynomial estimators, taking into account cross-
fitting.

Lemma A.1. Suppose that Assumption 3 holds. For s ∈ [S] and ⋆ ∈ {−,+}, it holds that:

(i) S

n

∑
i∈Is

K⋆
h(Xi)(Xi/h)

j = E[K⋆
h(Xi)(Xi/h)

j] +Op((nh)
−1/2) for j ∈ N,

(ii)
∑
i∈Is

w⋆
i,0,p(h) = 1/S +Op((nh)

−1/2),

(iii)
∑
i∈Is

w⋆
i,0,p(h)X

j
i = Op(h

j(nh)−1/2) for 1 ≤ j ≤ p,

(iv)
∑
i∈Is

|w⋆
i,0,p(h)X

j
i | = OP (h

j) for j ∈ N,

(v)
∑
i∈Is

w⋆
i,0,p(h)

2 = OP ((nh)
−1).

Proof. The results follow from standard kernel calculations.

Proof of Theorem A.1. To begin with, note that

τ̂0,p(h; η̄)− τ̂0,p(h; η̂) =
S∑

s=1

Gs(p), Gs(p) ≡
∑
i∈Is

wi,0,p(h)(η̂s(Zi)− η̄(Zi)).
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Since S is a fixed number, it suffices to show that Gs(p) = Op(tp) for s ∈ {1, ..., S}. We
analyze the expectation and variance of Gs(p) conditional on Xn and (Wj)j∈Ics . We begin
with the expectation. It holds with probability approaching one that∣∣E[Gs(p)|Xn, (Wj)j∈Ics ]

∣∣ = ∣∣∣∑
i∈Is

wi,0,p(h)E[η̂s(Zi)− η̄(Zi)|Xi, (Wj)j∈Ics ]
∣∣∣

≤ sup
η∈Tn

∣∣∣∑
i∈Is

wi,0,p(h)E[η(Zi)− η̄(Zi)|Xi]
∣∣∣.

Let m(x; η) = E[η(Zi)− η̄(Zi)|Xi = x]. Taylor’s theorem yields

m(Xi; η) = m(0; η) +

p∑
j=1

1

j!
∂jxm(0; η)Xj

i +
1

(p+ 1)!
∂p+1
x m(x̃i,p; η)X

p+1
i

for some x̃i,p between 0 and Xi. We analyze the three terms associated with different terms
of Taylor’s expansion separately. We make use of Lemma A.1 in each step.

First, using the Cauchy-Schwarz inequality, we obtain that

sup
η∈Tn

∣∣∣m(0; η)
∑
i∈Is

wi,0,p(h)
∣∣∣ = sup

η∈Tn
|m(0; η)|Op((nh)

−1/2) = Op(rn(nh)
−1/2).

Second, for j ∈ {1, ..., p}, we have that

sup
η∈Tn

∣∣∣∂jxm(0; η)
∑
i∈Is

wi,0,p(h)X
j
i

∣∣∣ = sup
η∈Tn

|∂jxm(0; η)|hjOp((nh)
−1/2) = Op(h

j(nh)−1/2vj,n).

Third, we note that

sup
η∈Tn

∣∣∣∑
i∈Is

wi,0,p(h)∂
p+1
x m(x̃i; η)X

p+1
i

∣∣∣ ≤∑
i∈Is

|wi,0,p(h)X
p+1
i | sup

η∈Tn
|∂p+1

x m(x̃i; η)| = Op(h
p+1vp+1,n).

Next, we consider the conditional variance. It holds with probability approaching one
that

V
[
Gs(p)|Xn, (Wj)j∈Ics

]
=
∑
i∈Is

wi,0,p(h)
2V
[
η̄(Zi)− η̂s(Zi)|Xn, (Wj)j∈Ics

]
≤ sup

η∈Tn

∑
i∈Is

wi,0,p(h)
2E[(η̄(Zi)− η(Zi))

2|Xi]

≤ sup
η∈Tn

sup
x∈Xh

E[(η̄(Zi)− η(Zi))
2|Xi = x]

∑
i∈Is

wi,0,p(h)
2

= Op(r
2
n (nh)

−1),
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where we use Lemma A.1 and Assumption 1 in the last step. The conditional convergence
then implies the unconditional one (see Chernozhukov et al., 2018, Lemma 6.1).

Theorem A.2. Suppose that the assumptions of Theorem A.1 hold, Assumption 4 holds,
and E[Mi(η̄)|Xi = x] is p + 1 times continuously differentiable with L-Lipschitz continuous
p+ 1 derivative bounded by C. Then

√
nhVp(η̄)

−1/2
(
τ̂0,p(h; η̂)− τ − hp+1Bp

) d→ N (0, 1),

where, for some kernel constants ν̄p and κ̄p,

Bp,n =
ν̄p
2

(
∂p+1
x E[Mi(η̄)|Xi = x]

∣∣
x=0+

+ (−1)p∂p+1
x E[Mi(η̄)|Xi = x]

∣∣
x=0−

)
+ oP (1),

Vp(η̄) =
κ̄p

fX(0)

(
V[Mi(η̄)|Xi = 0+] + V[Mi(η̄)|Xi = 0−]

)
.

Proof of Theorem A.2. By the conditional version of Lyapunov’s CLT, we obtain that

se0,p(h; η̄)−1 (τ̂0,p(h; η̄)− E[τ̂0,p(h; η̄)|Xn]) → N (0, 1).

where se20,p(h; η̄) =
∑n

i=1wi,0,p(h)
2V[Mi(η̄)|Xi]. By L-Lipschitz continuity of V[Mi(η̄)|Xi = x]

in x, we obtain that

se20,p(h; η̄) =
n∑

i=1

w−
i,0,p(h)

2V[Mi(η̄)|Xi = 0−] +
n∑

i=1

w+
i,0,p(h)

2V[Mi(η̄)|Xi = 0+] + op((nh)
−1).

It then follows from standard kernel calculations that nh se20,p(h; η̄) − Vp(η̄) = oP (1) and
E[τ̂0,p(h; η̄)|Xn]− τ = Bph

p+1 + op(h
p+1) for some constant Bp.

A.3. Proofs of Theorems 1–3. Theorems 1 and 2 follow directly from the general results
in Theorems A.1 and A.2 with p = 1. It remains to prove Theorem 3. For any η ∈ V , it
holds that

2fX(0)

κ̄
V (η) = V[Yi − µ+

0 (Zi)|Xi = 0+] + V[Yi − µ−
0 (Zi)|Xi = 0−] + R(η),

where the first two terms on the right-hand side do not depend on η, and

R(η) = V[µ+
0 (Zi)− η(Zi)|Xi = 0+] + V[µ−

0 (Zi)− η(Zi)|Xi = 0−].
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Further, it holds that

R(η) = R(η0 + η − η0) = V
[
1

2
(µ+

0 (Zi)− µ−
0 (Zi))− (η(Zi)− η0(Zi))|Xi = 0+

]
+ V

[
−1

2
(µ+

0 (Zi)− µ−
0 (Zi))− (η(Zi)− η0(Zi))|Xi = 0−

]
= R(η0) + 2V[η(Zi)− η0(Zi)|Xi = 0],

where in the last step we use the assumption on continuity of conditional covariances. The
theorem follows from the above decomposition by taking the difference V (η(a))− V (η(b)) for
arbitrary η(a) and η(b) in V .

B. DETAILS ON SECTION 5.1: INFERENCE

In this section, we formally show that, under suitable assumptions, existing procedures
for bandwidth selection and construction of confidence intervals based on “no covariates”
estimators can be directly applied to the modified data {(Xi,Mi(η̂))}i∈[n].

B.1. Standard Errors. We propose a consistent standard error for τ̂v,p(h; η̂) of the form

ŝe2v,p(h; η̂) =
n∑

i=1

w2
i,v,p(h)σ̂

2
i (η̂),

where σ̂2
i (η̂) is a nearest-neighbor estimator of the variance σ2

i (η̄) = V[Mi(η̄)|Xi]:

σ̂2
i (η̂) =

(
Mi(η̂s(i))−

1

R

∑
j∈Ri

Mj(η̂s(j))

)2

,

with Ri is the set of R nearest neighbors of unit i in terms of their running variable realization
on the respective side of the cutoff. Establishing consistency of this standard error requires
the following technical assumption on the first stage estimator, which is implied by our main
assumptions, for example, if Mi(η̄) is bounded.

Assumption B.1. For all s ∈ [S], it holds that
∑

i∈[n]w
2
i,v,p(h)ιi(η̂) = oP ((nh

1+2v)−1) for
0 ≤ v ≤ p, where

ιi(η̂) =
∑

(j,l)∈R2
i

(j,l)/∈I2
s(i)

(
(η̂s(i)(Zi)− η̄(Zi))− (η̂s(j)(Zj)− η̄(Zj))

)
(Mi(η̄)−Ml(η̄)).
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Proposition B.1. Suppose that Assumptions 1–4 and B.1 hold. Moreover, suppose that
Assumption 1 also holds with Xh replaced by X̃h that is an open set s.t. Xh ⊂ X̃h, and
supη∈Tn supx∈X̃h

E[(Mi(η)−E[Mi(η)|Xi])
4|Xi = x] is bounded by B for all n ∈ N. Let further

E[(Mi(η̄)|Xi = x] and V[(Mi(η̄)|Xi = x] be L-Lipschitz continuous. Then for all 0 ≤ v ≤ p,
it holds that

nh1+2v
(
ŝe2v,p(h; η̂)− se2v,p(h; η̄)

)
= oP (1),

where se2v,p(h; η̄) =
∑n

i=1w
2
i,v,p(h)σ

2
i (η̄).

We note that Assumption B.1 could be dropped if we were to study a slight variation of
ŝe2v,p(h; η̂) in which we take the R nearest neighbors of unit i in terms of running variable
values among units in the same fold to compute σ̂2

i (η̂). However, proceeding like this would
mean that existing software packages that compute nearest neighbor standard errors would
have to be adapted, and could not be applied directly to the modified data {(Xi,Mi(η̂))}i∈[n].

B.2. Confidence intervals. We discuss three of types of confidence intervals for the RD
parameter τ .

B.2.1. Confidence intervals with undersmoothing. We first consider confidence intervals that
are based on an undersmoothing bandwidth of order o(n−1/5). This choice of bandwidth
implies that the smoothing bias shrinks to zero at a faster rate than the standard deviation
and can hence be ignored when constructing confidence intervals. Let

CIus1−α =
[
τ̂(h; η̂)± zαŝe(h; η̂)

]
,

where zα is the 1−α/2 quantile of the standard normal distribution. Proposition B.2 shows
that CIus1−α is asymptotically valid.

Proposition B.2. Suppose that the assumptions of Proposition B.1 hold for p = 1. If
nh5 = o(1), then P

(
τ ∈ CIus1−α

)
≥ 1− α + op(1).

B.2.2. Robust bias-corrected confidence intervals. We now adapt the robust bias corrections
of Calonico et al. (2014) to our setting. To keep the exposition transparent, we focus on
the important special case where the bandwidth used to obtain the bias correction is the
same as the main bandwidth. In this case, the local linear estimator with a bias correction is
numerically equal to the local quadratic estimator (with the same bandwidth), i.e. τ̂0,2(h; η̂).
Let

CIrbc1−α =
[
τ̂0,2(h; η̂)± zαŝe0,2(h; η̂)

]
.

Proposition B.3 shows that CIrbc1−α is asymptotically valid.
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Proposition B.3. Suppose that the assumptions of Theorem A.2 and Proposition B.1 hold
for p = 2. If nh7 = o(1), then P

(
τ ∈ CIrbc1−α

)
≥ 1− α + op(1).

B.2.3. Bias-aware confidence intervals. We consider a simplified version of the bias-aware
approach of Armstrong and Kolesár (2018) that accounts for the asymptotic bias in our
setting. Suppose that the researcher is willing to assume that the the second derivative of
the conditional expectation function of the outcome Yi is bounded by BY . Then it follows
from the results of Armstrong and Kolesár (2020) and our Theorem 2 that the smoothing
bias of our covariate-adjusted RD estimator is bounded in absolute value by b̄(h) + oP (h

2),
where

b̄(h) = −BY

2

n∑
i=1

wi(h)X
2
i sign(Xi).

We note that this bound is independent of the chosen adjustment function. The proposed
confidence interval is given by

CIba1−α =
[
τ̂(h; η̂)± zα(b̄(h)/ŝe0,1(h; η̂)) ŝe0,1(h; η̂)

]
.

where zα(r) is the 1 − α/2 quantile of the absolute value of the normal distribution with
mean r and variance one. Proposition B.4 shows that CIba1−α is asymptotically valid.

Proposition B.4. Suppose that the assumptions of Proposition B.1 hold for p = 1. If
nh5 = O(1), then P

(
τ ∈ CIba1−α

)
≥ 1− α + op(1).

In contrast to the results of Armstrong and Kolesár (2018, 2020), we only show that this
confidence interval is valid for a fixed sequence of DGPs, rather than uniformly over a larger
set of DGPs. We leave providing inference that is uniformly valid over how the covariates
affect the outcome variable for future research.

B.3. Consistent estimation of the MSE-optimal bandwidth. From Theorem 2, it
follows that the bandwidth that minimizes the Asymptotic Mean Squared Error (AMSE) is
given by

hAMSE =

(
V (η̄)

4B2
base

)1/5

n−1/5.

This optimal bandwidth can be consistently estimated by applying the procedure of Calonico
et al. (2014, s.6) to the modified data {(Xi,Mi(η̂s(i)))}i∈[n] using the following three steps.17

Step 0. Initial bandwidths.
17We recognize that, similarly to the original proposal of Calonico et al. (2014), the proposed bandwidth

selector is subject to the criticism of Armstrong and Kolesár (2020, Section 4.1).
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(i) Take any sequence vn such that vn → 0 and nvn → ∞. In practice, set v̂n =

2.58min{SX , IQR/1.349}n−1/5, where S2
X and IQRX denote, respectively, the sam-

ple variance and interquantile range of {Xi : 1 ≤ i ≤ n}.

(ii) Choose cn s.t. cn → 0 and nc7n → ∞. Specifically, let

ĉn = Ĉ1/9
n n−1/9,

Ĉn =
7nv7nŝe3,3(vn; η̂)

2B2
3,3

(
γ̂+4,4(η̂)− γ̂−4,4(η̂)

)2 ,
where γ̂⋆4,4(η̂) is the coefficient on (1/4!)X4

i in the fourth-order global polynomial regres-
sion using the modified data {(Xi,Mi(η̂s(i)))}i∈[n] on the respective side of the cutoff
and Bv,p = B+

v,p − B−
v,p, where B⋆

v,p for ⋆ ∈ {+,−} is the kernel constant in the leading
bias term of β̂⋆

v,p(h; η̂).

Step 1. Choose a pilot bandwidth bn such that bn → 0 and nb5n → ∞. In practice, estimate
the AMSE-optimal bandwidth for the second derivative in the local quadratic regression:

b̂n = B̂1/7
n n−1/7,

B̂n =
5nv5nŝe2,2(vn; η̂)

2B2
2,2

((
β̂+
3,3(cn, η̂) + β̂−

3,3(cn; η̂)
)2

+ 3ŝe3,3(cn; η̂)
) .

Step 2. The main bandwidth hAMSE is estimated as

ĥn = Ĥ1/5
n n−1/5,

Ĥn =
nvnŝe0,1(vn; η̂)

4B2
0,1

((
β̂+
2,2(bn; η̂)− β̂−

2,2(bn; η̂)
)2

+ 3ŝe2,2(bn; η̂)
) .

Proposition B.5. Suppose that the assumptions of Theorem A.2 and Proposition B.1 hold
for p = 3, X is bounded, P

[
1/C ≤ |γ̂+4,4(η̄) − γ̂−4,4(η̄)| ≤ C] → 1 for some C > 0, and

Assumption 1 holds with Xh replaced by X . Suppose that β+
v (η̄) − (−1)v+1β−

v (η̄) is bounded
and bounded away from zero for v ∈ {2, 3}. Then ĉn

p→ 0, nĉ 7n
p→ ∞, b̂n

p→ 0, nb̂ 5n
p→ ∞, and

ĥn/hAMSE
p→ 1.

B.4. Proofs of Propositions B.1–B.5.

B.4.1. Proof of Proposition B.1. To begin with, we note that the weights wi,v,p(h) satisfy:
(i)
∑

i∈[n]wi,v,p(h)
2 = OP ((nh

1+2v)−1) and (ii) maxi∈[n]wi,v,p(h)
2 = oP ((nh

1+2v)−1). This can
be shown using standard kernel calculations.
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The proof of Proposition B.1 consists in showing that ŝe2v,p(h; η̂) is asymptotically equiv-
alent to its infeasible version that uses the deterministic function η̄, given by

ŝe2v,p(h; η̄) =
∑
i∈[n]

w2
i,v,p(h)

(
Mi(η̄)−

1

R

∑
j∈Ri

Mj(η̄)

)2

.

Using arguments as in the proof of Theorem 4 in Noack and Rothe (2021), one can show
that ŝe2v,p(h; η̄)− se2v,p(h; η̄) = oP ((nh

1+2v)−1). It therefore remains to show that ŝe2v,p(h; η̂)−
ŝe2v,p(h; η̄) = oP ((nh

1+2v)−1). We express this difference as the sum of terms that are linear
in Mi(η̂s(i))−Mi(η̄) = η̄(Zi)− η̂s(i)(Zi) and a quadratic remainder:

ŝe2v,p(h; η̂)− ŝe2v,p(h; η̄)

= 2
∑
i∈[n]

w2
i,v,p(h)

(
Mi(η̄)−

1

R

∑
j∈Ri

Mj(η̄)

)(
Mi(η̂s(i))−Mi(η̄)−

1

R

∑
j∈Ri

(Mj(η̂s(j))−Mj(η̄))

)

+
∑
i∈[n]

w2
i,v,p(h)

(
Mi(η̂s(i))−Mi(η̄)−

1

R

∑
j∈Ri

(Mj(η̂s(j))−Mj(η̄))

)2

≡ A1 + 2A2.

We first consider A2. Let C denote a generic constant that might change from line to
line. It holds that

1

C
A2 ≤

n∑
i=1

w2
i,v,p(h)

(
(η̂s(i)(Zi)− η̄(Zi))

2 +
1

R

∑
j∈Ri

(η̂s(j)(Zj)− η̄(Zj))
2

)

≤
n∑

i=1

(
w2

i,v,p(h) +
C

R

∑
j: i∈Rj

w2
j,v,p(h)

)
(η̂s(i)(Zi)− η̄(Zi))

2

=
∑
s∈[S]

∑
i∈Is

(
w2

i,v,p(h) +
C

R

∑
j: i∈Rj

w2
j,v,p(h)

)
(η̂s(i)(Zi)− η̄(Zi))

2

≡
∑
s∈[S]

A2,s.
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For all s ∈ [S], it holds with probability approaching one that

E[A2,s|Xn, {Wi}i∈Ics ]

≤
∑
i∈Is

w2
i,v,p(h) +

C

R

∑
j: i∈Rj

w2
j,v,p(h)

 sup
η∈Tn

sup
x∈Xh

E
[
(η(Zi)− η̄(Zi))

2|Xi = x
]

≤ C

n∑
i=1

w2
i,v,p(h) sup

η∈Tn
sup
x∈Xh

E
[
(η(Zi)− η̄(Zi))

2|Xi = x
]
= OP ((nh

1+2v)−1r2n).

As S is finite and A2,s is a positive random variable, it follows that A2 = oP ((nh
1+2v)−1).

To show that A1 is of order oP ((nh1+2v)−1), we separate the terms involving the nearest
neighbors in the fold of unit i and those that involve at least one neighbor from a different
fold. Specifically, we have that:

A1 =
1

R2

∑
i∈[n]

w2
i,v,p(h)

( ∑
j,l∈Ri

(Mi(η̄)−Ml(η̄))
(
(η̂s(i)(Zi)− η̄(Zi))− (η̂s(j)(Zj)− η̄(Zj))

))

=
1

R2

∑
i∈[n]

w2
i,v,p(h)

 ∑
(j,l)∈R2

i

(j,l)/∈I2
s(i)

(Mi(η̄)−Ml(η̄))
(
(η̂s(i)(Zi)− η̄(Zi))− (η̂s(j)(Zj)− η̄(Zj))

)


+
1

R2

∑
s∈[S]

∑
i∈Is

w2
i,v,p(h)

( ∑
j,l∈Ri∩Is

(Mi(η̄)−Ml(η̄))
(
(η̂s(i)(Zi)− η̄(Zi))− (η̂s(j)(Zj)− η̄(Zj))

))
≡ A1,1 +

1

R2

∑
s∈[S]

A1,2,s.

By Assumption B.1, it holds that A1,1 = oP ((nh
1+2v)−1). For all s ∈ [S], it holds with

probability approaching one that

E[|A1,2,s||Xn, {Wi}i∈Ics ]

≤
∑
i∈Is

w2
i,v,p(h)

∑
j,l∈(Ri∩Is)∪{i}

E[|(Mi(η̄)−Ml(η̄))(η̂s(j)(Zj)− η̄(Zj))||Xn, {Wi}i∈Ics ]

≤
∑
i∈Is

w2
i,v,p(h)

∑
j,l∈(Ri∩Is)∪{i}

sup
η∈Tn

E[|(Mi(η̄)−Ml(η̄))(η(Zj)− η̄(Zj))||Xn]

≤
∑
i∈Is

w2
i,v,p(h)

∑
j,l∈(Ri∩Is)∪{i}

(
E[(Mi(η̄)−Ml(η̄))

2|Xn] sup
η∈Tn

E[(η(Zj)− η̄(Zj))
2|Xn]

)1/2

= OP ((nh
1+2v)−1rn),
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where the last equality follows from Assumption 1 and the assumption of bounded second
moments. Hence, A1,2,s = op((nh

1+2v)−1), which concludes this proof.

B.4.2. Proof of Proposition B.2. Validity of the CI follows directly from asymptotic normality
of the local linear estimator established in Theorem A.2 and the fact that the standard error
is consistent.

B.4.3. Proof of Proposition B.3. Validity of the CI follows directly from asymptotic normality
of the local quadratic estimator established in Theorem A.2 and the fact that the standard
error is consistent.

B.4.4. Proof of Proposition B.4. Validity of the CI follows directly from asymptotic normality
of the local linear estimator established in Theorem A.2, the fact that the standard error is
consistent, and that the bias is bounded in absolute value by b̄(h) + oP (h

2).

B.4.5. Proof of Proposition B.5. The proposition follows, using the consistency of the stan-
dard error established in Proposition B.1, if the following claims hold:

(i) γ̂⋆4,4(η̂)− γ̂⋆4,4(η̄) = oP (1),

(ii) β̂+
3,3(cn; η̂) + β̂−

3,3(cn; η̂) = β+
3 (η̄) + β−

3 (η̄) + oP (1),

(iii) β̂+
2,2(bn; η̂)− β̂−

2,2(bn; η̂) = β+
2 (η̄)− β−

2 (η̄) + oP (1).

Part (i). First, note that

γ̂⋆4,4(η̂)− γ̂⋆4,4(η̄) = e′4

(
n∑

i=1

X̃⋆
4,iX̃

⋆⊤

4,i

)−1 n∑
i=1

X̃⋆
4,i(η̄(Zi)− η̂s(i)(Zi)),

where X̃+
4,i = X̃4,i1{Xi ≥ 0} and X̃−

4,i = X̃4,i1{Xi < 0}. Further, for s ∈ [S], we have that

∣∣∣S
n

∑
i∈Is

Xj
i (η̄(Zi)− η̂s(Zi))

∣∣∣ ≤√S

n

∑
i∈Is

X2j
i

√
S

n

∑
i∈Is

(η̄(Zi)− η̂s(Zi))2.

Note that, with probability approaching one,

E

[
S

n

∑
i∈Is

(η̄(Zi)− η̂s(Zi))
2
∣∣∣Xn, (Wj)j∈Ics

]
≤ sup

η∈Tn
E

[
S

n

∑
i∈Is

(η̄(Zi)− η(Zi))
2
∣∣∣Xn

]
≤ sup

η∈Tn
sup
x∈X

E[(η̄(Zi)− η(Zi))
2|Xi = x] = o(1).

It follows that
∣∣∣Sn ∑i∈Is X

j
i (η̄(Zi)− η̂s(i)(Zi))

∣∣∣ = op(1). Since X is bounded, the claim follows.
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Part (ii) and (iii). Using steps as in the proof of Theorem A.1, for p ∈ {2, 3}, we obtain that
β̂⋆
p,p(h; η̂)− β̂⋆

p,p(h, η̄) = oP (1). Moreover, under the assumptions made, β̂⋆
p,p(h, η̄)− β⋆

p(η̄) =

OP (h+ (nh1+2p)−1/2). The claims follow using the conditions on bn and cn.

C. DETAILS ON SECTION 5.3: FUZZY RD DESIGNS

We show asymptotic normality of the fuzzy covariate-adjusted RD estimator introduced in
Section 5.3 and characterize the dependence of the asymptotic variance on the population
analogues of the adjustment functions.

Proposition C.1. Suppose that Assumptions 1–4 hold also with Ti replacing Yi, mutatis
mutandis.

(i) It holds that
√
nhVθ(η̄Y , η̄T )

−1/2
(
θ̂(h; η̂Y , η̂T )− θ − Bθ(η̄Y , η̄T )h

2
)
→ N (0, 1),

where

Bθ(η̄Y , η̄T ) =
ν̄

2τT

(
∂2xE[Yi − θTi|Xi = x]

∣∣
x=0+

− ∂2xE[Yi − θTi|Xi = x]
∣∣
x=0−

)
+ oP (1),

Vθ(η̄Y , η̄T ) =
κ̄

fX(0)

(
V[Ui(η̄Y , η̄T )|Xi = 0+] + V[Ui(η̄Y , η̄T )|Xi = 0−]

)
,

and Ui(η̄Y , η̄T ) = (Yi − θTi − (η̄Y (Zi)− θη̄T (Zi))) /τT .

(ii) Suppose additionally that the assumptions of Theorem 3 hold, mutatis mutandis, also
with Ti replacing Yi and the definition of V adjusted accordingly. Then, for any
η
(a)
Y , η

(b)
Y , η

(a)
T , η

(b)
T ∈ V, it holds that

Vθ(η
(a)
Y , η

(a)
T )− Vθ(η

(b)
Y , η

(b)
T )

=
2κ̄

τ 2TfX(0)

(
V[ηY,0(Zi)− θηT,0(Zi)− (η

(a)
Y (Zi)− θη

(a)
T (Zi))|Xi = 0]

−V[ηY,0(Zi)− θηT,0(Zi)− (η
(b)
Y (Zi)− θη

(b)
T (Zi))|Xi = 0]

)
.

Proof. We first note that

θ̂(h; η̂Y , η̂T )− θ̂(h; η̄Y , η̄T ) = OP ((rn(nh)
−1/2 + v1,nh(nh)

−1/2 + v2,nh
2)2).

This equality is an immediate consequence of Theorem 1 and an application of the continuous
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mapping theorem as |τT | > 0. Further, using a mean-value expansion, it follows that

θ̂(h; η̄Y , η̄T )− θ =
1

τT
(τ̂Y (h; η̄Y )− τY )−

τY
τ 2T

(τ̂T (h; η̄T )− τT ) + ρ̂(η̄T , η̄Y )

with

ρ̂(η̄T , η̄Y ) =
τ̂Y (h; η̄Y )(τ̂T (h; η̄T )− τT )

2

2τ̂ ∗T (h; η̄T )
3

− (τ̂Y (h; η̄Y )− τY )(τ̂T (h; η̄T )− τT )

τ 2T
,

where τ̂ ∗T (h; ηT ) is some intermediate value between τT and τ̂T (h; η̄T ). Given our assumptions,
it follows that

ρ̂(η̂T , η̂Y ) = OP

(
((nh)−1/2 + h2)2

)
.

Part (i) follows analogously to Theorems 1 and 2 and Part (ii) follows from Theorem 3.

D. ADDITIONAL SIMULATION RESULTS

In this section, we present further simulation results. Table E.1 extends the results in Table 1.
We present results for the bias-aware approach discussed in the main text with a bandwidth
that is chosen optimally for the standard RD estimator without covariates. By doing so,
we focus on the effect that our covariate adjustments have on the constants in the bias and
variance expressions of the asymptotic distribution while holding the bandwidth fixed. We
can therefore see that the bias is the same across all methods, and we can still draw the
same qualitative conclusions about the standard deviations of the covariate-adjusted RD
estimators using different first-stage estimators as discussed in Section 6. We emphasize
that the procedure of holding the bandwidth fixed is useful to understand the mechanics of
our variance reduction procedure, but in practice we recommend choosing the bandwidth
optimally for the given adjustment terms as it leads to narrower confidence intervals.

In Table E.1, we also consider bandwidth choice and confidence intervals constructions
based on robust bias corrections and undersmoothing (the bandwidth for undersmoothing is
chosen as n−1/20 times the MSE-optimal bandwidth estimated using the rdrobust package).
The linear adjustment estimators with cross-fitting are constructed analogously to the pro-
cedure described in Section 6.1. For flexible covariate adjustments, the bandwidth is chosen
optimally for each adjustment function. The qualitative conclusions about the relative per-
formance of different first-stage estimators in different models remain the same as discussed
in the main text. The simulated average bandwidth of robust bias corrections is typically
smaller than that of the bias-aware approach, and the confidence intervals are larger. This
feature is known in the nonparametric literature.
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In Figure E.1, we plot the empirical CDFs of the estimators considered in Section 6. These
graphs illustrate the quality of the approximation obtained in Theorem 1. As predicted by
our theory, for all DGPs, the entire distribution of the covariate-adjusted RD estimator using
the ensemble combination of all feasible first-stage estimation methods is very similar to the
one of the oracle estimator.

E. ADDITIONAL EMPIRICAL ESTIMATION RESULTS

In this section, we extend the empirical results from Section 7 by considering additional
outcome variables and second-stage inference methods. Specifically, we consider four differ-
ent outcome variables: food and non-food consumption, one year and two years after the
program implementation. For the second stage, we employ bias-aware inference with differ-
ent smoothness constants, robust bias corrections and a version of undersmoothing. As in
Section 7, the results are based on 100 different data splits.

The magnitude of gains from using covariate adjustments varies across outcome variables,
but the relative patterns remain the same in that our covariate adjustments based on the
linear regression provide improvements upon the standard RD estimator, but SuperLearner
adjustments generally perform better.
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Table E.1: Simulation results for different second-stage specifications.
Optimal “no covariates” bandwidth Optimal covariate-adjusted bandwidth

RDHonest M=2 rdrobust Undersmoothing

Bias SD RMSE CI Cov CI Length h Bias SD RMSE CI Cov CI Length h Bias SD RMSE CI Cov CI Length h

DGP L=0
No covariates 3.69 7.49 8.35 94.90 32.58 43.20 1.40 9.78 9.88 94.84 52.18 29.78 0.57 11.49 11.50 94.47 43.03 20.36
Linear Adjustments 3.70 7.51 8.37 94.68 32.44 43.20 1.39 9.85 9.94 94.73 51.95 29.56 0.57 11.60 11.61 93.98 42.71 20.21
Linear Adjustments with CF 3.69 7.53 8.38 94.96 32.85 43.20 1.41 9.85 9.95 94.99 52.96 29.87 0.58 11.61 11.63 94.75 43.91 20.46
Flexible Adjustments
Oracle 3.69 7.49 8.35 94.90 32.58 43.20 1.40 9.78 9.88 94.84 52.18 29.78 0.57 11.49 11.50 94.47 43.03 20.36
Linear Regression 3.73 7.51 8.38 94.83 32.64 43.20 1.44 9.80 9.90 94.82 52.31 29.79 0.60 11.51 11.53 94.39 43.14 20.37
Neural Nets 3.72 7.50 8.38 94.84 32.63 43.20 1.44 9.80 9.90 94.82 52.28 29.79 0.60 11.51 11.52 94.42 43.12 20.37
Boosted Tree 3.72 7.64 8.50 94.77 33.11 43.20 1.43 9.96 10.07 94.80 53.20 29.81 0.60 11.72 11.73 94.50 43.88 20.39
Random Forest 3.73 7.56 8.42 94.83 32.82 43.20 1.43 9.86 9.97 94.87 52.64 29.79 0.61 11.60 11.61 94.44 43.42 20.37
rLasso 3.72 7.49 8.36 94.87 32.59 43.20 1.43 9.78 9.89 94.84 52.22 29.78 0.60 11.50 11.51 94.49 43.06 20.37
SuperLearner 3.73 7.51 8.38 94.86 32.64 43.20 1.44 9.80 9.91 94.88 52.31 29.78 0.61 11.52 11.53 94.51 43.14 20.37
DGP L=4
No covariates 8.52 17.03 19.04 94.95 74.29 65.59 1.54 26.96 27.01 94.90 144.63 30.55 0.78 31.80 31.81 94.57 119.28 20.89
Linear Adjustments 8.58 6.37 10.69 94.89 37.97 65.59 1.40 10.24 10.33 94.68 54.17 29.53 0.61 12.11 12.13 94.00 44.55 20.20
Linear Adjustments with CF 8.56 6.38 10.68 95.03 38.18 65.59 1.42 10.29 10.39 94.96 55.25 29.83 0.62 12.17 12.19 94.58 45.82 20.41
Flexible Adjustments
Oracle 8.58 6.58 10.81 94.98 38.79 65.59 1.41 10.59 10.68 94.84 56.28 29.91 0.59 12.46 12.47 94.48 46.42 20.45
Linear Regression 8.61 6.39 10.72 94.95 38.16 65.59 1.45 10.27 10.37 94.83 54.71 29.78 0.65 12.10 12.11 94.39 45.12 20.37
Neural Nets 8.61 6.39 10.72 94.94 38.15 65.59 1.45 10.26 10.36 94.86 54.70 29.77 0.65 12.09 12.11 94.41 45.12 20.36
Boosted Tree 8.61 7.19 11.22 94.82 40.74 65.59 1.50 11.49 11.59 94.89 61.37 29.81 0.72 13.53 13.55 94.36 50.62 20.39
Random Forest 8.61 6.88 11.02 94.91 39.73 65.59 1.48 11.03 11.13 94.88 58.77 29.78 0.70 12.99 13.01 94.36 48.47 20.36
rLasso 8.61 6.41 10.74 94.94 38.23 65.59 1.45 10.31 10.42 94.83 54.89 29.79 0.65 12.14 12.16 94.47 45.27 20.37
SuperLearner 8.61 6.38 10.72 94.98 38.14 65.59 1.45 10.26 10.36 94.84 54.66 29.77 0.65 12.08 12.10 94.44 45.09 20.36
DGP L=16
No covariates 10.45 20.96 23.42 94.87 91.01 72.23 1.59 34.61 34.65 94.98 185.82 30.78 0.74 40.94 40.95 94.62 153.28 21.05
Linear Adjustments 10.48 13.42 17.02 94.70 64.80 72.23 1.54 22.39 22.45 94.77 117.99 30.27 0.69 26.48 26.49 93.92 97.07 20.70
Linear Adjustments with CF 10.46 13.46 17.05 94.86 65.26 72.23 1.55 22.49 22.54 95.10 120.56 30.60 0.69 26.66 26.67 94.66 100.16 20.95
Flexible Adjustments
Oracle 10.42 6.24 12.15 95.02 41.44 72.23 1.50 10.51 10.61 94.86 56.31 29.88 0.69 12.35 12.37 94.39 46.45 20.43
Linear Regression 10.50 13.45 17.06 94.78 65.10 72.23 1.59 22.34 22.39 95.00 118.98 30.55 0.71 26.35 26.36 94.51 98.25 20.89
Neural Nets 10.51 8.06 13.24 94.92 47.35 72.23 1.57 13.49 13.58 94.96 72.09 30.16 0.75 15.90 15.92 94.56 59.48 20.62
Boosted Tree 10.48 8.30 13.37 94.76 48.05 72.23 1.58 13.82 13.91 94.89 73.90 30.21 0.76 16.29 16.31 94.57 60.98 20.66
Random Forest 10.47 11.68 15.68 94.82 59.12 72.23 1.58 19.42 19.48 94.90 103.36 30.47 0.72 22.88 22.89 94.37 85.33 20.84
rLasso 10.47 6.29 12.21 94.82 41.56 72.23 1.55 10.56 10.68 94.90 56.65 29.82 0.72 12.42 12.44 94.44 46.73 20.39
SuperLearner 10.47 6.29 12.22 94.77 41.56 72.23 1.55 10.57 10.68 94.88 56.65 29.82 0.73 12.43 12.45 94.44 46.73 20.39

Notes: Results are based on 50,000 Monte Carlo draws. The first panel uses the bandwidth that is optimal for the “no covariates” RD estimator and chooses the bandwidth and constructs confidence
sets based on bias-aware inference. The second panel uses for each specification the optimal bandwidth and confidence sets based on robust bias correct and undersmoothing. The columns show results
for simulated mean bias (Bias); the simulated standard deviation of the estimator (SD); the simulated root mean squared error (RMSE); simulated coverage of confidence intervals with 95% nominal
level (CI Cov); the average simulated confidence interval length (CI Length); and the average simulated bandwidth (h). For flexible adjustments, in the first stage, the sample is restricted to the
observations that lie in the window (−b, b) with b being twice the “no covariates” bandwidth.
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Figure E.1: Empirical cumulative distribution functions of covariate-adjusted RD estimates based
on different adjustment methods and the different DGPs. The estimates are based on the data
generating process explained in Section 6.2 and the estimators are implemented as explained in
Section 6.1.
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Table E.2: Full results for the empirical application.
RDHonest M=100 RDHonest M=300 RDHonest M=500 rdrobust Undersmoothing

Est SE ∆SE(%) h Estimate SE ∆SE(%) h Est SE ∆SE(%) h Est SE ∆SE(%) h Est SE ∆SE(%) h

Food Consumption in t+1
No covariates 0.1 14.1 - 0.961 -18.6 16.6 - 0.591 -24.7 18.1 - 0.478 -22.2 27.4 - 0.372 -4.1 23.3 - 0.254
Linear Adjustments -0.2 11.9 -18.6 0.914 -14.8 13.7 -21.0 0.567 -21.1 14.6 -24.0 0.462 -23.1 20.5 -33.9 0.342 -7.9 16.4 -41.8 0.234
Linear Adjustments with CF -0.6 13.4 -5.2 0.930 -13.3 17.1 2.8 0.579 -16.3 19.9 9.1 0.471 -16.7 30.2 9.3 0.415 -11.8 25.2 7.8 0.255
Flexible Adjustments
Linear Regression -2.5 13.3 -6.5 0.933 -16.0 15.7 -5.4 0.578 -19.9 17.2 -5.0 0.469 -17.7 25.7 -6.7 0.378 -6.0 21.8 -6.9 0.259
Neural Nets -2.1 13.1 -7.7 0.930 -16.2 15.5 -6.9 0.576 -19.8 17.0 -6.5 0.467 -17.3 25.1 -9.1 0.378 -4.5 21.4 -9.0 0.259
Boosted Trees -3.1 12.4 -13.7 0.920 -17.2 14.5 -14.7 0.569 -18.9 15.7 -15.2 0.461 -15.0 21.7 -26.4 0.386 1.6 18.8 -23.9 0.264
Random Forest -5.1 12.4 -14.0 0.921 -19.1 14.4 -15.1 0.570 -21.0 15.7 -15.6 0.462 -17.1 22.0 -24.3 0.384 -0.4 18.9 -22.8 0.263
rLasso -5.4 12.5 -12.9 0.928 -21.5 14.4 -15.3 0.575 -24.9 15.5 -16.9 0.466 -21.4 21.9 -24.9 0.372 -7.3 18.7 -24.1 0.255
SuperLearner -3.9 12.4 -14.4 0.921 -18.3 14.3 -15.7 0.569 -20.7 15.6 -16.3 0.462 -17.0 21.8 -25.5 0.379 -1.2 18.8 -23.8 0.260
Food Consumption in t+2
No covariates 56.7 23.5 - 1.096 52.9 30.2 - 0.678 52.1 34.2 - 0.539 54.9 48.1 - 0.444 55.0 44.1 - 0.304
Linear Adjustments 59.6 20.9 -12.0 1.078 62.9 25.8 -17.1 0.671 61.4 28.3 -20.8 0.538 62.0 38.6 -24.5 0.425 32.0 33.8 -30.5 0.291
Linear Adjustments with CF 58.5 22.7 -3.4 1.097 63.2 29.5 -2.2 0.685 65.3 34.1 -0.3 0.548 68.3 52.4 8.3 0.446 38.7 54.4 18.8 0.292
Flexible Adjustments
Linear Regression 51.9 22.9 -2.4 1.101 55.5 29.6 -2.1 0.680 57.4 33.5 -1.9 0.541 60.2 47.6 -0.9 0.450 61.8 43.6 -1.3 0.308
Neural Nets 54.2 22.6 -3.6 1.092 56.7 29.3 -3.0 0.673 58.0 33.2 -2.8 0.535 61.3 46.6 -3.1 0.450 62.4 42.7 -3.3 0.308
Boosted Trees 50.8 22.8 -3.1 1.093 52.3 29.4 -2.7 0.674 51.9 33.3 -2.7 0.536 54.4 46.1 -4.2 0.451 54.9 42.6 -3.6 0.309
Random Forest 50.5 22.8 -2.7 1.091 51.5 29.6 -2.0 0.673 52.4 33.6 -1.7 0.535 56.1 46.7 -3.0 0.452 59.0 43.0 -2.7 0.310
rLasso 52.5 22.7 -3.6 1.093 51.0 29.3 -3.1 0.675 50.4 33.2 -3.0 0.537 53.3 46.4 -3.5 0.443 54.1 42.9 -3.0 0.303
SuperLearner 54.0 22.6 -4.0 1.089 54.0 29.2 -3.5 0.671 54.0 33.1 -3.2 0.533 56.9 45.9 -4.7 0.448 57.3 42.4 -4.2 0.307
Non-Food Consumption in t+1
No covariates 5.0 12.0 - 0.881 -3.7 14.1 - 0.542 -9.7 15.5 - 0.440 -9.1 22.0 - 0.344 -7.4 19.2 - 0.236
Linear Adjustments 3.7 10.4 -15.1 0.861 0.3 11.7 -20.9 0.536 -6.3 12.7 -22.5 0.436 -5.1 17.0 -29.3 0.350 -6.0 13.8 -39.0 0.240
Linear Adjustments with CF 2.1 11.5 -4.2 0.878 -2.1 13.6 -3.8 0.543 -7.9 15.2 -1.8 0.443 -8.3 20.7 -5.8 0.421 -10.3 18.7 -2.5 0.300
Flexible Adjustments
Linear Regression -0.8 12.0 0.2 0.880 -6.4 14.2 0.4 0.542 -10.7 15.6 0.5 0.440 -10.4 21.1 -4.2 0.391 -12.4 18.7 -2.7 0.268
Neural Nets -0.5 11.9 -0.6 0.876 -6.9 14.0 -0.5 0.539 -11.5 15.4 -0.5 0.438 -11.4 20.9 -5.1 0.375 -15.2 18.6 -3.4 0.257
Boosted Trees 1.4 12.2 1.8 0.865 -3.8 14.6 3.2 0.535 -7.7 16.1 3.5 0.435 -7.3 21.7 -1.1 0.404 -6.5 19.1 -0.4 0.277
Random Forest 5.6 12.0 0.7 0.870 0.5 14.3 1.7 0.537 -2.9 15.8 1.8 0.436 -2.3 21.5 -2.1 0.403 1.8 18.9 -1.6 0.276
rLasso 6.9 11.8 -1.3 0.876 -0.9 13.8 -2.2 0.539 -5.5 15.2 -2.3 0.438 -4.3 21.2 -3.4 0.351 -4.5 18.6 -3.0 0.240
SuperLearner 3.9 11.8 -1.1 0.865 -2.5 14.0 -0.7 0.535 -6.8 15.4 -0.6 0.435 -6.1 21.1 -4.2 0.374 -6.3 18.6 -3.2 0.256
Non-Food Consumption in t+2
No covariates 37.9 17.3 - 0.986 41.7 21.7 - 0.605 42.6 24.4 - 0.487 43.8 32.3 - 0.440 37.5 29.7 - 0.301
Linear Adjustments 42.4 15.5 -11.6 0.975 46.4 18.3 -18.2 0.604 43.2 20.0 -22.3 0.490 40.3 26.9 -20.3 0.400 15.5 23.4 -27.0 0.274
Linear Adjustments with CF 43.4 17.1 -1.1 0.998 50.4 21.8 0.5 0.617 48.8 24.9 2.1 0.500 48.8 36.4 11.3 0.435 27.0 37.9 21.6 0.294
Flexible Adjustments
Linear Regression 41.3 17.2 -0.3 1.014 49.7 21.5 -0.6 0.617 51.1 24.2 -0.9 0.497 52.0 32.5 0.5 0.436 44.6 30.0 0.9 0.299
Neural Nets 39.5 17.0 -1.4 0.990 46.8 21.3 -1.6 0.608 47.6 24.0 -1.8 0.490 48.6 31.8 -1.6 0.439 41.9 29.4 -1.1 0.300
Boosted Trees 34.9 16.8 -2.4 0.988 41.0 21.1 -2.7 0.606 42.2 23.7 -3.0 0.487 43.3 31.2 -3.7 0.441 37.0 28.8 -3.2 0.302
Random Forest 34.7 17.2 -0.2 0.985 40.7 21.8 0.4 0.603 43.0 24.5 0.3 0.486 44.4 32.0 -0.9 0.448 40.9 29.5 -0.6 0.307
rLasso 38.3 17.1 -1.0 0.988 42.2 21.4 -1.2 0.605 42.9 24.1 -1.3 0.487 44.1 31.8 -1.8 0.436 37.9 29.4 -1.1 0.299
SuperLearner 38.3 16.8 -2.6 0.982 43.9 21.1 -2.5 0.602 45.5 23.8 -2.6 0.485 46.7 31.1 -3.8 0.444 41.0 28.7 -3.3 0.304
Notes: The table presents results for four outcome variables and five second-stage specifications. In each case, we consider various types of covariate adjustments. We report the median estimate across
100 splits of the data (Est), the nearest-neighbor standard error taking into account the variation introduced by sample splitting (SE), the percentage change in the standard error relative to the “no
covariates” standard error (∆SE(%)), and the median bandwidth (h). For flexible adjustments, in the first stage, the sample is restricted to the observations that lie in the window (−b, b) where b is twice
the “no covariates” bandwidth for RDHonest with smoothness constant M = 300 calculated for the respective outcome variable.
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